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ABSTRACT

Secure execution environments promise developers a way to secure their software even
when running in untrusted environments. For example, the Intel software guard extensions
(SGX) technology strives to provide confidential computing on hardware operated by an
untrusted party. In Ethereum, software called smart contracts manages a large number of
funds and assets. As such, correct execution of smart contracts is paramount. However,
arbitrary network participants execute the smart contracts within an open distributed system.
Secure execution environments ensure with cryptographic protocols that the integrity and
confidentiality of both execution and data are preserved. While these new execution
environments offer many security guarantees, they cannot automatically secure the software
executing within the execution environment. This dissertation challenges the security of the
software developed for and running within secure execution environments. More specifically,
we tackle the (in)security of software for the execution environments of the SGX trusted
computing technology and the Ethereum blockchain system. This dissertation develops
methods for identification and remediation of security vulnerabilities specific to the respective
secure execution environment.

Existing methods for automated vulnerability identification are not sufficient as they
are not tailored to the respective execution environments. In this dissertation, we identify
these shortcomings and develop new automated analysis methods. Here, an analysis tool is
developed that adapts generic symbolic execution to identify vulnerabilities at the boundary
between SGX enclave code and the untrusted, and as such potentially attacker-controlled,
host system. Furthermore, this work shows how to use the fuzzing method to efficiently
identify even complex vulnerability patterns, such as reentrancy, in Ethereum smart contracts.

Identifying vulnerabilities alone is not sufficient to ensure the security of already deployed
software. As such, this dissertation also covers new methods for vulnerability remediation.
Due to the immutability of smart contracts in Ethereum, it is especially hard to fix bugs and
vulnerabilities. As such, we discuss a taint-tracking-based detection of reentrancy attacks,
which can be integrated directly into the blockchain system. Furthermore, we also discuss
an approach to automate large parts of the patching process of a smart contract, allowing
developers to securely operate a smart contract on Ethereum.
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ZUSAMMENFASSUNG

Sichere Ausführungsumgebungen bieten Entwicklern die Möglichkeit, ihre Software abzu-
sichern, auch wenn sie in nicht vertrauenswürdigen Umgebungen ausgeführt wird. Die SGX
Technologie von Intel versucht, vertrauliche Datenverarbeitung (confidential computing) auf
Hardware zu ermöglichen, die von einer nicht vertrauenswürdigen Partei betrieben wird. In
Ethereum verwaltet Software, so genannte Smart Contracts, Cryptocurrency und anderen
Vermögenswerten. Deswegen ist die korrekte Ausführung von Smart Contracts von größter
Bedeutung. Da jeder dem Ethereum Netzwerk beitreten kann, werden Smart Contracts
durch beliebige Netzwerkteilnehmer ausgeführt. Mithilfe von kryptografischen Protokollen
sorgen sichere Ausführungsumgebungen dafür, dass die Integrität und Vertraulichkeit der
Ausführung und der Daten gewahrt wird. Diese neuen Ausführungsumgebungen bieten
zwar viele Sicherheitsgarantien, aber sie können sie die darin ausgeführte Software nicht
vollständig vor Schwachstellen schützen. Diese Dissertation untersucht die Sicherheit der
Software, die für sichere Ausführungsumgebungen entwickelt wurde, genauer gesagt mit
der (Un-)Sicherheit von Software für die SGX Trusted Computing Technologie und dem
Ethereum Blockchain System. Dabei werden speziell angepasste Methoden zur Identifizierung
und Behebung von Sicherheitslücken erforscht.

Bestehende Methoden zum automatisierten Auffinden von Schwachstellen sind nicht aus-
reichend, da sie nicht auf die jeweiligen Ausführungsumgebungen zugeschnitten sind. In
dieser Dissertation identifizieren wir diese Defizite und entwickeln neue Analysemethoden.
Dabei wird ein Analysewerkzeug vorgestellt, welches generische symbolische Ausführung
adaptiert, um Schwachstellen an der Grenze zwischen SGX Enclave-Code und dem nicht
vertrauenswürdigen Host-System aufzudecken. Darüber hinaus zeigt diese Arbeit, wies
sogenanntes Fuzzing eingesetzt werden kann, um selbst komplexe Schwachstellen automa-
tisiert zu finden, wie z.B. Reentrancy in Ethereum Smart Contracts. Da das Auffinden
von Schwachstellen allein jedoch nicht ausreicht, um die Sicherheit von bestehender Soft-
ware zu gewährleisten, werden in dieser Dissertation auch neue Methoden zur Behebung
von Schwachstellen untersucht. Aufgrund der Unveränderlichkeit von Smart Contracts in
Ethereum ist es besonders schwierig Softwarefehler zu beheben. Wir diskutieren daher eine
auf Taint-Tracking basierende Erkennung von Reentrancy-Angriffen, die in das Blockchain-
System integriert wird und Schwachstellen zur Laufzeit erkennt und blockiert. Außerdem
diskutieren wir eine Methode, um große Teile des Patching-Prozesses von Smart Contracts zu
automatisieren, wodurch es Entwicklern ermöglicht wird, einen Smart Contract auf Ethereum
sicher zu betreiben.
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CHAPTER 1
INTRODUCTION

Software security is paramount to today’s infrastructure, encompassing more than traditional
Information Technology (IT) domains. For example, the cyber-physical system (CPS) domain
encompasses a blend of the IT and Operational Technology (OT) domains, where software
components directly control physical processes. Since the infamous Stuxnet incident, it
has become clear that software is a primary attack vector against highly critical systems.
Similarly, the financial industry has become increasingly automated, with extremes such as
automated high-frequency trading or the rise of the decentralized finance (DeFI) industry.

However, software security still poses a major problem for software vendors. Design
flaws and programming mistakes are common during software development, making pieces
of software vulnerable to attacks. For example, today, 34 years after the first large-scale
exploitation of a so-called buffer overflow issue [See] and 26 years after the first public
article by One [One96], large C/C++ software projects are still being actively exploited using
memory corruption exploits [Zer]. In spite of research on defenses and mitigations both in
industry and academia [Sze+13], memory corruption is still a major issue. For example,
Microsoft, arguably one of the largest software vendors, still identifies memory corruption as
the major source of security vulnerabilities in their products [Tho19]. However, software
security is not only a problem for the systems software domain. A new set of vulnerability
types accommodates every new programming paradigm. For example, various forms of
injection attacks plague software running web applications. Most recently, smart contracts,
software executed as part of blockchain protocols, are targeted by attackers using software
vulnerabilities.

Modern IT systems are designed to minimize the trusted computing base (TCB), thereby
reducing the potential impact of programming errors in critical components. Anderson
defines the TCB as follows [And20, p 320]:

More formally, the TCB is defined as the set of components (hardware, software,
human, . . . ) whose correct functioning is sufficient to ensure that the security
policy is enforced, or, more vividly, whose failure could cause a breach of the
security policy.

1



Chapter 1 Introduction

Minimizing the TCB follows the intuition that smaller systems have fewer chances to contain
bugs that allow an attacker to break the system’s security policy, i.e., they have smaller
attack surfaces. Furthermore, smaller systems are more amenable to formal analysis, code
review, and testing, thereby increasing the probability of spotting security vulnerabilities
upfront. As such, almost all current information systems attempt to reduce their TCB.

However, several recent technologies attempt to make it possible to further minimize the
TCB. Traditionally, the TCB would consist of the hardware, the operating system kernel,
and several trusted system services. However, the trusted execution environments (TEEs)
remove many of these traditional components from the TCB. The operating system is no
longer part of the TCB. Most TEEs remove even the human operators of a device from the
TCB. The only remaining trusted party is the hardware vendor. The TCB is reduced to
the central processing unit (CPU) and its directly connected components. For example, in
SGX, anything outside the physically sealed CPU die, including main memory, is considered
untrusted [CD16]. This scenario is particularly appealing for the cloud setting, where a user
wants to offload computation to a remote system operated by a potentially untrusted party.

A second example of a highly reduced TCB is the smart contract as used in blockchain
ecosystems [Woo19]. A decentralized application (DApp) is backed by a smart contract,
which encodes the business logic of the application: essentially reducing the TCB to the
smart contract and the blockchain protocol. Any interaction with the smart contract is
cryptographically secured, and its execution is replicated among the entire distributed
blockchain system. The correct execution of the smart contract is ensured using economic
incentives inherent to the distributed system. For example, an attacker would have to subvert
at least 51 % of the computing power of a classical Proof-of-Work blockchain system to
manipulate ledger entries, i.e., results of a smart contract’s execution [Nak08]. Furthermore,
due to the decentralized nature and diversity of participating nodes in the blockchain network,
the software running and executing the blockchain protocols is not necessarily part of the
TCB. However, due to the replicated nature—and in contrast to TEEs—this comes at the
cost of confidentiality. For example, in Ethereum, all smart contracts and their associated
data are public. As a consequence, one has to resort to more complex cryptographic protocols
to ensure data confidentiality.

This dissertation examines software systems, which are summarized under the umbrella
term secure execution environments in the context of this dissertation. We define secure exe-
cution environments as execution environments that exhibit two main properties: (1) Secure
execution environments exhibit a significantly reduced TCB compared to classical software
systems. (2) Code and data integrity is protected by the execution environment. However,
to be useful, such secure execution environments must allow untrusted—and potentially
malicious—parties to interact with the software inside the secure execution environment.
While the secure execution environment protects the software running inside TEEs from ma-
nipulation, there is still a remaining attack surface accessible through the interface between
trusted and untrusted software. Software running inside a secure execution environment
must exercise self-protection against malicious inputs. This leads to the central research
question of this dissertation:

How can we secure the software running inside secure execution environments?

To answer this central research question, this dissertation investigates two orthogonal
directions: identifying vulnerabilities and hardening software. This dissertation describes

2



Chapter 1 Introduction

novel methods to automatically identify vulnerabilities in software targeting secure execution
environments. Developers can utilize the methods and tools developed as part of this
dissertation to identify vulnerabilities before deployment. Similarly, users can assess the
security of deployed software before they decide to trust it with their data. Applying
these vulnerability detection techniques to current systems, we demonstrate that software,
which relies on secure execution environments, is not as secure as previously assumed.
Our analysis of the discovered issues shows that many security vulnerabilities are due to
programming mistakes that can be traced back to misunderstandings of the constraints
imposed by the underlying secure execution environment. To improve the security of
software, this dissertation shows approaches to securing software within secure execution
environments. We tackle both developing a robust process for patching software in secure
execution environments and hardening the secure execution environment itself.

To study the security of software inside secure execution environments, we analyze two
highly relevant technologies implementing such an environment. Ethereum is the first, most
prominent, and most popular Blockchain platform natively supporting smart contracts. As
such, Ethereum has become the backbone of the upcoming DeFI industry. In Ethereum
and other blockchain systems, smart contracts can own and autonomously transfer currency
to other parties. As such, smart contracts must execute correctly and satisfy the intention
of all stakeholders. While the Ethereum system guarantees that the smart contract code
is executed correctly with the consensus protocol, it does not protect smart contracts
against attacks on a logical level, i.e., exploitable software bugs. Over the last decade, the
blockchain community has witnessed several major bugs and vulnerabilities within smart
contracts. In many cases, these vulnerabilities allowed attackers to gain incredible amounts
of cryptocurrency. In 2016 the infamous attack on the “The DAO” smart contract resulted
in a loss of Ether, worth over 50 million US Dollars at the time the attack occurred [Pri16].
Still, in 2020 the community has witnessed attacks against the Uniswap V2 and Lendf.me
contracts [Tor+21b], where the attackers gained Tokens worth roughly 25 million US Dollars.
These attacks were due to the same type of software bug: an exploitable reentrancy issue.
This continuous stream of incidents due to smart contract bugs demonstrates that practical
software security for smart contracts is still a highly relevant and open research area.

Intel introduced SGX as its most sophisticated incarnation of trusted computing technol-
ogy [Hoe+13; Intel4; McK+13] to date. SGX shields so-called enclaves, the trusted code in
the SGX model, from malicious access by the operator of the machine, other applications, the
underlying operating system, and the hypervisor. The only trusted component in the SGX
setting is the Intel CPU package. Additionally, SGX features many well-known concepts from
earlier trusted computing technology, such as data binding, sealing, and remote attestation.
Combined, all these features make SGX a prime candidate for ensuring data confidentiality
and integrity in the public cloud [BPH14; Sch+15a]. The SGX technology ensures that
the user can establish a secure channel into the SGX enclave while simultaneously ensuring
that the enclave is in a trustworthy state. Using the secure channel, the user can safely
transfer data into the enclave executing on public cloud hardware. Similarly, SGX can be
used to protect, e.g., biometric data processing, on mobile endpoints such as laptops. For
example, the SGX technology is used in fingerprint sensor software (Section 4.3), DRM
protection [Cyb], and privacy-preserving applications like Signal [Mar17]. As such, SGX is
currently one of the most prominent trusted computing technologies.

3



Chapter 1 Introduction

Current development practices for software in—the still relatively new—secure execution
environments are significantly lacking. Software developers are not as familiar with the
constraints of the programming models of secure execution environments, leading to fatal
programming mistakes that can be abused by attackers [ABC17; Luu+16; Van+19]. It is
important to detect such attacks early in the development lifecycle of software written for
secure execution environments. We investigate offensive methods to identify security issues
automatically and before deployment. To this end, we identify symbolic execution and fuzzing
as two industry-standard methods for automatically uncovering vulnerabilities in software.
However, these methods need to be adapted to the particularities of (secure) execution
environments to become effective tools in the hands of developers. Equally important, we
also investigate defensive methods as a second direction in this dissertation. We investigate
the capability of the secure execution environment to detect and block attacks as they are
happening as a second line of defense. Such built-in defensive methods allow the software to
remain secure even in the presence of a certain type of programming mistake that would
otherwise lead to a vulnerability. We also investigate patching software in secure execution
environments, which is highly challenging since the software vendor has only limited control
over the deployment of the software. For example, a software vendor of a classical web
service can take down the service until they finish developing a patch. However, a software
vendor for a secure execution environment usually cannot do this, as the software is either
already deployed to an untrusted client system (TEE) or is replicated among a decentralized
system (Blockchain).
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Figure 1.1: Overview on the four main publications of this dissertation and additional
publications grouped according to research direction.

Outline and Contributions
This dissertation is structured into three major parts: a discussion of the background
and literature (Chapters 2 and 3), followed by a discussion of two orthogonal aspects of
software security for secure execution environments: (1) identifying (Chapters 4 and 5) and
(2) mitigating vulnerabilities (Chapters 6 and 7).

First, we give the necessary technical background on software vulnerabilities in general and
on techniques to automatically identify vulnerabilities using dynamic analysis methods, such
as symbolic execution and fuzzing, in Chapter 2. Then, we discuss the technical details of
the two secure execution environments covered by this dissertation in Chapter 3: Consensus-
enforced distributed computation with Ethereum and hardware-secured confidential and
trusted computation with SGX. Both architectures and programming models allow untrusted
users to interact with a trusted software component using an interface similar to normal
library code components.

Figure 1.1 shows an overview of the research topics and contributions to the field of
software security by the author. Concerning vulnerability detection, we present two new
approaches to automatically identifying security vulnerabilities using symbolic execution
of SGX enclaves (Chapter 4) and fuzzing of smart contracts (Chapter 5). In the SENF
project [Paa+21a], we develop a statistically sound way of comparing fuzzers, which we
utilize to evaluate our newly developed smart contract fuzzer EF�CF in Chapter 5. In
Chapter 6, we present the first taint-tracking-based dynamic analysis for smart contracts,
dubbed Sereum, to detect and mitigate reentrancy attacks at runtime. The xTag project
presents an efficient detection approach for use-after-free exploit attempts on legacy x86
systems [Ber+22]. With Scadman, we develop an approach to anomaly detection in CPSs
using differential execution with a simulated CPS. With EVMPatch in Chapter 7, we
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show how to streamline and automate the patching process of smart contracts, an otherwise
cumbersome and error-prone process. HCC is a complementary patching approach that
uses source-to-source compilation to introduce hardening checks [Gie+22]. In the following,
we give an outline of the main chapters of this dissertation, their contributions, and prior
publications of the author.

Finding Vulnerabilities in SGX Enclaves using Symbolic Execution In Chapter 4, we
describe an approach to identify vulnerabilities in SGX enclaves using symbolic execution.
In contrast to prior studies on SGX enclaves, we present a methodology that allows us
to systematically search for security vulnerabilities in real-world enclave code. First, we
show how to adapt symbolic execution to SGX enclave code, tackling several challenges
imposed by the SGX technology. Second, we focus on identifying issues in the interface
between the untrusted software components and the trusted SGX enclave code. To achieve
this, we show how to model this interface between trusted and untrusted software in a
symbolic execution engine. We perform a study to assess the state of public SGX enclaves.
Using our symbolic execution engine, we identify several programming mistakes that are due
to misconceptions with respect to constraints imposed by SGX. We present a root-cause
analysis and systematization of the discovered bugs and deduce several secure programming
guidelines for SGX enclaves from our findings.

This chapter is based on the following publication, which has been nominated as a finalist
in the CSAW Applied Research competition and was awarded the 3rd place in the 8. German
IT-Security Price 2020:
“TeeRex: Discovery and Exploitation of Memory Corruption Vulnerabilities in SGX Enclaves”.
29th USENIX Security Symposium, 2020. Tobias Cloosters, Michael Rodler, and
Lucas Davi

Adapting and Improving Fuzzing for Smart Contracts Chapter 5 shows how to adapt
state-of-the-art fuzzing techniques to smart contracts and significantly improve the field
of automated smart contract analysis. In contrast to other prior fuzzing approaches, the
approach presented in this chapter emphasizes high test case throughput. This allows our
fuzzer to quickly search for potentially interesting inputs that are more likely to trigger
vulnerabilities. Our evaluation shows that our approach to fuzzing smart contracts out-
performs all current comparable smart contract analysis approaches, i.e., it outperforms
current fuzzers and symbolic executors. Furthermore, this chapter describes how to accurately
handle the complex interactions possible on the Ethereum blockchain in a fuzzer: cross-
contract interactions, multiple colluding attacker accounts, and various types of reentrant
calls. Our high-throughput fuzzer is paired with a very precise bug oracle based on the
native cryptocurrency of Ethereum. This means that any issue identified by our fuzzer is
very likely an exploitable bug. In fact, the fuzzer presented in this chapter automatically
generates exploits that can be used to verify the presence of the vulnerability.

The contents of this chapter are based on the following paper:
“EF/CF: A High Performance Fuzzer for Ethereum Smart Contracts”. IEEE European
Symposium on Security and Privacy (EuroS&P), 2023. Michael Rodler, David
Paaßen, Wenting Li, Lukas Bernhard, Thorsten Holz, Ghassan O. Karame, and Lucas Davi
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Exploit Mitigation for Smart Contracts using Taint Tracking Chapter 6 describes a
runtime exploit mitigation technique for smart contracts, which is called Sereum. In this
dissertation, we develop a novel dynamic analysis technique that is capable of identifying
reentrancy attacks, which are responsible for several high-profile attacks on the Ethereum
blockchain. In contrast to prior work, this approach focuses on detecting attacks as they
are executed. Sereum extends the Ethereum virtual machine (EVM) with a taint tracking
engine, allowing us to track information about data flows at runtime. In turn, Sereum
utilizes the taint tracking engine to implement an automatic locking mechanism in the EVM
runtime environment to detect abuses of reentrancy bugs. An attempted attack can be
mitigated based on Sereum’s accurate attack detection: Our approach can be embedded
into the EVM execution environment, such that reentrancy attacks are blocked automatically.
Alternatively, our approach can be used by smart contract developers to monitor smart
contract executions for reentrancy attacks and quickly react to ongoing attacks.

This chapter is based on the following publication:
“Sereum: Protecting Existing Smart Contracts Against Re-Entrancy Attacks”. 26th Annual
Network and Distributed System Security Symposium (NDSS), 2019. Michael
Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi
Automatic Patching of Smart Contracts with Bytecode Rewriting Finally, this disser-
tation discusses patching of smart contracts in Chapter 7. Due to the nature of smart
contracts, which are immutable after deployment and always available, patching is highly
challenging. Prior to the work presented in this chapter, patching smart contracts relied on
an error-prone manual process.

To reduce the potential for errors, Chapter 7 presents a framework for automatic patching
of smart contracts: EVMPatch. At the core of this framework is a trampoline-based
bytecode rewriting approach that rewrites and patches EVM bytecode. To deploy the
patched contract, EVMPatch utilizes a feature of the EVM that allows the reuse of
code from another smart contract to circumvent the immutability. This chapter presents
an evaluation of the feasibility of the EVMPatch approach by integrating an existing
vulnerability detection component to automatically patch integer bugs in smart contracts.
Developers can use our framework to quickly react to smart contract vulnerabilities and
deploy patched smart contracts.

In this chapter, methodology and results are presented that are based on the following
publication:
“EVMPatch: Timely and Automated Patching of Ethereum Smart Contracts”. 30th
USENIX Security Symposium, 2021. Michael Rodler, Wenting Li, Ghassan O. Karame,
and Lucas Davi

The results of this dissertation enable software security improvements for TEEs and smart
contracts. TeeRex (Chapter 4) and EF�CF (Chapter 5) enable developers to automatically
identify security vulnerabilities before deployment of software into secure execution environ-
ments. With Sereum (Chapter 6) this dissertation presents an extension to the execution
environment to detect attacks at runtime. Finally, with EVMPatch (Chapter 7) this
dissertation presents an approach to patching in always online secure execution environments.
Therefore, this dissertation covers security across the full development lifecycle of software
for secure execution environments.
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Additional Publications
Apart from the main publications on which this dissertation is based on, the author of
this dissertation was involved in several research projects and co-authored the following
publications:

• “Control Behavior Integrity for Distributed Cyber-Physical Systems”. 11. ACM/IEEE
International Conference on Cyber-Physical Systems (ICCPS), 2020. Srid-
har Adepu, Ferdinand Brasser, Luis Garcia, Michael Rodler, Lucas Davi, Ahmad-Reza
Sadeghi, and Saman A. Zonouz

• “My Fuzzer Beats Them All! Developing a Framework for Fair Evaluation and Com-
parison of Fuzzers”. 26th European Symposium on Research in Computer
Security (ESORICS), 2021. David Paaßen, Sebastian Surminski, Michael Rodler,
and Lucas Davi

• “xTag: Mitigating Use-After-Free Vulnerabilities via Software-Based Pointer Tag-
ging on Intel x86-64”. IEEE European Symposium on Security and Privacy
(EuroS&P), 2022. Lukas Bernhard, Michael Rodler, Thorsten Holz, and Lucas Davi

• “Practical Mitigation of Smart Contract Bugs”. arXiv: 2203.00364, 2022, (under
submission). Jens-Rene Giesen, Sebastian Andreina, Michael Rodler, Ghassan O.
Karame, and Lucas Davi

• “Dissecting and Fuzzing Native Code on the Web” (under submission), 2023.
Oussama Draissi, Tobias Cloosters, David Klein, Marius Musch, Michael Rodler, Lucas
Davi, and Martin Johns
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CHAPTER 2
BACKGROUND ON SOFTWARE VULNERABILITIES

Software vulnerabilities are a major threat to modern IT systems, as software defines most
of the general-purpose computing devices we use today. Furthermore, software systems have
become highly connected, which exposes the software to potential attacks. In this chapter, we
cover the necessary technical background on software vulnerabilities and standard techniques
to automatically identify vulnerabilities. Here this chapter focuses on automatic testing.

Many vulnerabilities in software stem from programming mistakes that can be categorized
into various classes of bugs. For example, memory corruption exploits are a major threat
to systems software. Most systems software is written in the memory-unsafe programming
languages C/C++, which gives attackers the possibility to launch especially devastating
attacks once a memory-safety bug is discovered. We introduce memory safety and memory
errors in Section 2.1.1. However, memory safety is far from being the only type of vulner-
ability. We also discuss other relevant classes of vulnerabilities, such as concurrency bugs,
in Section 2.1.2. Finally, we also discuss security vulnerabilities due to mistakes in the
program’s business logic Section 2.1.3.

Automatically identifying bugs in software, both from a quality and security viewpoint,
is a large field of research. Multiple analysis techniques have been proposed, ranging from
static analysis methods to automated dynamic testing of code. Like software libraries, secure
execution environments expose a public interface, colloquially known as an application
programming interface (API). We give an overview of the most important related work in
the area of automatic testing of APIs, as these works are relevant also to automated testing
of the APIs of secure execution environments, such as enclaves or smart contracts. More
specifically, Section 2.2 covers two state-of-the-art techniques in automatically generating
inputs for software APIs: symbolic execution (Section 2.2.1) and fuzz testing (Section 2.2.2).
We utilize symbolic execution to analyze SGX enclaves in Chapter 4 and fuzz testing to
generate smart contract exploits in Chapters 4 and 5.
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2.1 Vulnerabilities in Software
This section reviews the most important classes of software vulnerabilities that are relevant in
later chapters. We describe the necessary background on memory safety issues in Section 2.1.1,
which have been a significant issue for large C/C++ code bases for almost 30 years [Sze+13].
In Chapter 4, we describe memory corruption attacks that exploit the lack of memory
safety at the boundary between trusted SGX enclaves and the untrusted host application.
Furthermore, we discuss vulnerabilities that are due to issues with concurrent execution
in Section 2.1.2, which is relevant for some of the exploits we describe in Chapter 4 and
reentrancy attacks in smart contracts, as discussed in Chapters 5 and 6. Finally, we also
discuss security vulnerabilities due to logic bugs in Section 2.1.3, which is highly relevant in
the context of smart contracts (Chapters 5 to 7).

2.1.1 Memory Safety Violations
Even after more than 20 years of research on memory corruption bugs [One96] and de-
fenses [Cow+98] in C/C++ applications, this problem has still not been completely ad-
dressed [Sze+13]. While memory-safe systems programming languages, such as Rust or Go,
have become more popular, many legacy codebases are still written in unsafe C/C++. One
of the most critical and prominent examples is web browsers [Lim+21]. Today web browsers
have become so feature-rich and ubiquitous that most computer users will regularly use
their web browser to safely execute code loaded from potentially untrusted sources. Modern
websites have evolved into web apps that consist of a mixture of HTML, CSS, multimedia
content, and most critically, JavaScript and WebAssembly code. This gives an attacker a
huge attack surface, while the user relies on the web browser to securely execute the web app
and restrict any illegitimate data accesses [Jia+16; Lim+21]. While browser vendors employ
significant effort to identify and mitigate memory errors, web browsers are still regularly
exploited using security-relevant memory errors. Similarly, operating system components
are still mostly written in C/C++ and are critical to the overall system’s security. As such,
finding new techniques to protect legacy C/C++ code against memory corruption attacks
remains crucial.

While memory errors are still prevalent, they have become significantly harder to exploit
in practice. Multiple exploit mitigation techniques have been developed and deployed to
production systems. Hardware-enforced non-executable memory essentially stopped code
injection attacks [PaX], and stack canaries made exploitation of stack-based buffer overflows
less likely to succeed [Cow+98]. Control-flow integrity (CFI) [Aba+09] is a well-researched
mitigation that is now widely available in production compilers [Mic14] and prevents return-
oriented programming (ROP) [Sha07] attacks. However, these mitigations have forced
attackers to resort to more advanced code-reuse or data-oriented attacks [Hu+16; Isp+18;
PKH19; Sch+15b].

Memory safety can be roughly categorized into two dimensions: spatial and temporal
memory safety. Spatial memory safety concerns itself with indexing with respect to a base
pointer, i.e., there should be no out-of-bounds memory access due to pointer arithmetic. The
most prominent example of a spatial memory error is the buffer overflow, where the program
writes past the end of an allocated buffer. Temporal memory safety is concerned with the
lifetime of a memory object, i.e., there should be no usage of a memory object before it was
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allocated or after it was deallocated again. An example of a bug that violates spatial memory
safety is the use after free bug. Here a pointer to a deallocated object remains in memory
and the program accesses the already deallocated object through this dangling pointer. The
memory model exposed to a C/C++ programmer is very low-level. As a consequence, these
languages provide neither temporal nor spatial memory safety. Low-level access to memory
is necessary to implement software components that work directly with hardware or to
develop extremely efficient optimized software. Most bug classes can be classified as either a
spatial or temporal memory safety violation. However, orthogonal but also closely related
to the problem of memory safety is the weak type safety offered in C/C++. We discuss the
relationship between type safety and memory safety at the end of this section.

Spatial Memory Safety To violate spatial memory safety, two conditions must be met:
1) a pointer must be adjusted to point outside the bounds of the original object, and 2) the
pointer must be dereferenced. Here, the most common root cause of spatial memory safety
violations is pointer arithmetic and a lack of proper bounds checking. The buffer overflow is
the classic example, where due to lack of length checking, the program accesses an array,
or buffer, past the allocated length. However, also other bugs can be classified as spatial
memory errors. For example, if a program reads dereferences an uninitialized pointer, then
the program will attempt to access an object somewhere in memory. In contrast to issues
with pointer arithmetic, there is no associated base pointer. However, the pointer may be
partially under attacker control, leading to a security vulnerability beyond a simple crash.
Other bugs that lead to spatial memory safety violations are type casts between incompatible
types (type-confusion) and dereferencing of invalid pointers, such as uninitialized or NULL
pointers.

Figure 2.1 shows an example of a spatial memory safety violation in the C programming
language. Here arrays are represented as pointers to the first object in the array. In this case,
the first byte of the char array. The array subscript operator is simply syntactic sugar for
pointer arithmetic: it is translated into a pointer addition and a pointer dereference. The for
loop in the example will execute the loop body nine times due to the ≤ operator being used
in the loop header. As a result, the buffer index i will index the ninth element in the last
iteration, resulting in a buffer overflow that writes the bounds of the original array object.

1 char array[8];
2 for (int i = 0; i <= 8; i++) { // off-by-one error
3 array[i] = '\0'; // last loop will set array[8]
4 }

Figure 2.1: Example of a spatial memory safety violation (buffer overflow) due to an off-by-
one error, where the last loop iteration executes with a buffer index that is too
big.

Such buffer overflows easily occur when dealing with strings or byte buffers in the C
language. This is mostly due to the absence of automatic bounds checking and the poorly
designed string APIs of the C standard library [One96]. While string handling in C++ is
much less error-prone due to the STL std::string type, other common container types
still default to unchecked operations. For example, the common std::vector container
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defaults to using unchecked access via the subscript operator while providing bounds-checked
access only via the at method. Memory-safe languages, such as Java, go or rust, deal
with the problem of spatial memory safety by automatically introducing bounds-checking
code, disallowing arbitrary pointer arithmetic, and preventing dereferencing of uninitialized
pointers.

Temporal Memory Safety A program is temporal memory-safe if no objects are accessed
before or after they have been allocated. A program must first let a pointer become dangling,
i.e., a pointer that references an object that has been deallocated. If this dangling pointer
is dereferenced, temporal memory safety is violated. Temporal memory safety violations
become especially problematic if the memory area that the dangling pointer is referencing
contains another potentially attacker-controlled object because memory is reused by the
allocator. Temporal safety violations are often due to the manual memory management in
C/C++: the programmer has to explicitly allocate and free memory. Even moderately large
code bases, it is not easily possible to track all references to an object and decide when it
can be freed.

Figure 2.2 shows an example of a temporal safety violation. First, 8 byte of memory are
allocated using the standard malloc function in line 3. A reference into the allocated memory
is saved in the pointer q. Subsequently, the allocated memory is again deallocated using the
standard free function. Afterward, another 8 byte memory object is allocated. To reduce
memory usage, a typical implementation of a memory allocator will attempt to reuse the
previously freed memory block and immediately return it to the caller. As a result, when
the pointer q is dereferenced in the last line, it would actually write to the u object instead.
However, at this point, both pointers alias each other, even though they should not.

1 uint32_t *p, *q;
2 char *u;
3 p = malloc(8); // allocate a uint32_t[2] array
4 q = p + 1; // q references the second uint32_t
5 // ...
6 free(p);
7 u = malloc(8); // likely(p == u)
8 // ...
9 *q = ... // Use-After-Free Bug: modifies u instead

Figure 2.2: Example of a temporal memory safety violation.

One can utilize automatic memory management, typically by employing garbage collection
or reference counting, to automatically and comprehensively ensure temporal memory safety.
This way, a memory location is only deallocated when no reference exists anymore. Garbage
collection has been popularized by languages such as Java or C#, which feature tracing
garbage collectors. However, C/C++ can also be retrofitted with garbage collection [BD95],
and most modern systems programming languages also feature automatic memory manage-
ment. For example, the go language has implemented an efficient and lightweight garbage
collector. The Rust programming language features the borrow checker to prove temporal
memory safety at compile time at the expense of becoming more restrictive with respect to
allocation and aliasing behavior [Jun+20]. A Rust programmer can fall back to reference
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counted smart pointers when the compiler cannot prove temporal memory safety at compile
time. The C++ STL has also introduced smart pointers, which automatically manage the
lifetime of the underlying object. However, due to backward compatibility, C++ smart point-
ers are often turned into unmanaged legacy pointers, bypassing the guarantees of the smart
pointers. As such, temporal memory safety is still a big issue for large C++ code bases such
as browsers, where use-after-free vulnerabilities are still the majority of vulnerabilities [Zer].

Type Safety vs. Memory Safety Type systems are the foundation of many programming
languages. At the most basic level, types are used to ensure that the programmer attempts
to combine only compatible objects in operations, e.g., only numbers are added and not
a number and a string. However, type systems also facilitate abstractions and interfaces,
allowing the programmer to hide complexity, reuse code, etc. If a compiler’s type checker
cannot decide whether two types are compatible, the decision can be postponed to the runtime
of the program. This is colloquially referred to as dynamic typing. However, the C language
has no concept of types during runtime. All type checking happens during compilation
(static typing), and at runtime, the programmer has to ensure that only compatible types
are used. However, type casting and the union data structure provide facilities to convert
any type to any other type, allowing the programmer to break any guarantees by the type
system.

Furthermore, in C and C++, type safety is also closely intertwined with memory safety.
The lack of type safety can be easily turned into a memory safety issue when a type cast
wrongly changes the meaning of an integer to a pointer, leading to out-of-bounds access.
Inversely, for type safety to hold during runtime, memory safety must also hold. A memory
safety violation can lead to breaking a type invariant, e.g., a boolean value that is represented
by neither 0 nor 1 in memory.

1 struct Foo {
2 int a;
3 }; // sizeof(Foo) == 4
4 struct Bar : public Foo {
5 int b;
6 }; // sizeof(Bar) == 8
7 // ...
8 Foo* f = new Foo();
9 // ...

10 Bar* b = static_cast<Bar*>(f); // invalid downcast
11 b->a = ... // *(b + 0) ok
12 b->b = ... // *(b + 4) out-of-bounds

Figure 2.3: Weak type safety in C/C++ can cause memory safety issues.

The weak type system can also lead to memory safety violations. Figure 2.3 shows an
example where the lack of proper type-checking results in an out-of-bounds access. The
class Bar inherits from Foo, so it has the members a and b. A pointer to a Foo is cast in the
code snippet to the Bar type without additional checks. However, in this case, the pointer
actually references a Foo object. This type of object does not feature the b member, which
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is accessed later. This access leads to indexing out-of-bounds of the original object, whose
size is only 4 byte.

The C language features a notoriously weak type system, which causes many issues and is
often mitigated using ad-hoc object models. As such, the C++ object model requires that
for certain classes, the type of an object can be acquired at runtime using runtime type
information (RTTI). This information can then be used to validate type casts using the
dynamic_cast operator. Unfortunately, this does not mitigate all typing-related issues in
C++. Furthermore, RTTI is often disabled for performance reasons [Jeo+17].

2.1.2 Concurrency Bugs
Since current software systems typically run multiple tasks on one machine, they need
to support concurrent execution of programs. However, concurrency in software systems
complicates software design and implementation. There are several bugs that are easy to
introduce when writing concurrent software. We will now discuss the major concepts of bugs
in concurrent software systems.

Race Conditions Adve et al. [Adv+91] defines races conditions in the following way:

Informally, two memory operations in an execution form a data race if at least
one of them is a data operation (as opposed to a synchronization operation), at
least one of them is a write (as opposed to a read), both access the same memory
location, and they are not ordered by intervening synchronization operations.

As such, race conditions often lead to problems, such as two threads operating on different
values, causing corruption of the values. In the broader sense, race conditions are a problem
for software robustness. However, race conditions can also become the root cause of memory
corruption bugs. For example, there have been multiple race conditions in the Linux kernel
that cause use-after-free (UAF) bugs [LML21].

Time-of-Check to Time-of-Use Issues The problem behind time-of-check time-of-use
(TOCTOU) issues is that there is a time window between a security check and the use of a
resource. For example, TOCTOU bugs are common when operating on files. For example,
a privileged program or service validates that an input file is not a symbolic link before
accessing the file. This is to avoid confused deputy attacks, where the attacker abuses a
privileged program or service to access a file normally out-of-scope for the attacker. However,
the attacker can attempt to exploit the time window between the check on the file, e.g., by
replacing the file with a symbolic link after the check has passed.

Double-Fetch Bugs This class of bugs has become infamous due to the prevalence in
operating system (OS) kernels with support for multi-threaded user space processes. Here the
kernel fetches the same user space memory location two times in a row with the assumption
that the value cannot change between the two reads. However, in a multi-threaded system,
this is not necessarily the case. A typical attack vector is the execution of a system call.
The kernel fetches a system call parameter from user space, performs some validation, and
then fetches the same parameter again from user space memory. However, if the user space
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1 // An argument marked as "__user *" is a pointer to the user space memory passed
2 // to the kernel by the user space code.
3 void tls_setsockopt_simplified(char __user *arg) {
4 struct tls_crypto_info header, *full = /* allocated before */ ;
5

6 // [FETCH]
7 ➀ if (copy_from_user(&header, arg, sizeof(struct tls_crypto_info)))
8 return -EFAULT;
9

10 // [CHECK]
11 ➁ if (header.version != TLS_1_2_VERSION)
12 return -ENOTSUPP;
13

14 // [FETCH]
15 ➁ if (copy_from_user(full, arg, sizeof(struct tls12_crypto_info_aes_gcm_128)))
16 return -EFAULT;
17

18 // [BUG] full->version might not be TLS_1_2_VERSION
19 // ...
20 // process(full)
21 // ...
22 }

Figure 2.4: Example for a double-fetch bug in the networking code of the Linux ker-
nel [Xu+18].

process has the capability of running multiple threads, it can change the value between the
first and second fetch. This often leads to TOCTOU issues, where the user space can bypass
kernel validation by changing memory parameters after the validation is finished.

Figure 2.4 shows an example of a double-fetch bug that causes a potential TOCTOU issue.
Here the kernel attempts to validate whether the user space program passed the right version
of a TLS header to the kernel. It does so by checking the TLS version flag in the header
data structure. First, it fetches a general header from user space at ➀. It then performs a
check for the TLS version by comparing it with a predefined header (➁). The kernel then
fetches the full-sized header from user space at ➂. However, in between ➀ and ➂, the user
space can change the value of the header to something else.

In general, the difficulty of exploiting race conditions varies depending on the target
system and is influenced by many factors, such as the number of running processes, general
system load, the microarchitecture of the CPU, etc. For example, the window between
the two memory fetches in Figure 2.4 seems very small: only a single comparison and
a conditional branch. However, an attacker often has various ways to extend such race
windows when attempting to exploit race conditions. For example, the attacker can exploit
microarchitectural features, such as caches or the branch predictor, to stretch the race
window [Sch+18]. Other techniques abuse some kernel functionalities to extend a race
window, such as moving threads between CPUs or triggering interrupts [LML21].
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1 // ...
2 int get_user_balance(userid_t user);
3 void set_user_balance(userid_t user, int amount);
4

5 void transfer(userid_t from, userid_t to, int amount) {
6 if (get_user_balance(from) >= amount) {
7 int new_balance_from = get_user_balance(from) - amount;
8 set_user_balance(from, new_balance_from);
9 int new_balance_to = get_user_balance(to) + amount;

10 set_user_balance(to, new_balance_to);
11 }
12 }
13 // ...

Figure 2.5: The depicted function manages bank transfers, sending some amount from one
user to another. However, the application logic does not account for negative
amounts leading to a vulnerability, where anyone can steal money from any other
account.

2.1.3 Logic Bugs
In previous sections, we discuss security vulnerabilities that are due to shortcomings of the
used programming language or environment. For example, memory errors are mostly due
to the lack of built-in memory safety in systems languages such as C/C++. However, most
application languages, such as Java, offer memory safety using automatic bounds checking
and garbage collection. However, security vulnerabilities can also arise due to programming
mistakes in an application’s logic. These are independent of the programming language
and typically highly specific to the domain of the application. For example, many systems
have access control rules to enforce integrity and confidentiality of the data on the system.
However, a bug in the enforcement logic of the access control check can result in a security
hole that attackers can exploit to work around the usual access control checks. However,
the class of logic bugs contains different application-specific issues going far beyond access
control issues. Broadly speaking, the class of logic bugs contains all vulnerabilities that
allow an attacker to manipulate and abuse the legitimate processing flow of an application
with a negative impact on the organization running the application or to other users of the
application.

Figure 2.5 shows an example for a logic bug. The depicted function is part of a larger
application that manages transactions that transfer some form of currency between users,
for example, the in-game currency in a multiplayer game. The function receives two user
IDs and the amount, represented as a signed integer, as parameters. The code includes a
check for whether the original user has enough currency in their account. However, the code
does not account for the fact that a malicious user could attempt to transfer a negative
amount. As a result, the malicious user can abuse the transfer of negative amounts to force
the system to transfer currency from other accounts without any permission or checks. In
this example, this violates the application’s intended logic: no user should be able to steal
currency from other accounts.
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2.2 Testing Software Interfaces (APIs)
Developers generally decompose Software into various independent pieces, which are then
combined to a full software product. For example, it is a common model to encapsulate
commonly useful functionality into software libraries. A single program then consists of the
main program code and associated libraries. This has the advantage of allowing the re-use of
library code, which increases maintainability of software, allows for distributed development,
and also increases the resource efficiency of software. Similarly, distributed software systems
are composed of multiple software services, which interact with each other over the network.
Every library or service exposes a public interface, which users of the library or service can
call to use the functionality implemented in the library. This interface is commonly referred
to as the API.

Generally, there is no trust boundary between a main program and the libraries it utilizes.
However, when considering services in distributed systems, we often observe a trust boundary
between services that potentially run on different machines. For example, many web services
offer public APIs for anyone to interact with. Such APIs often include access control logic
to authenticate and authorize the user of the API. When considering secure execution
environments, we also deal with a certain type of API. For example, in the case of SGX, an
enclave acts as an isolated software library that can be utilized by an untrusted main program.
Similarly, smart contracts act as services, which can be called by everyone that takes part in
the Blockchain network. As such, similar to, e.g., web services, software in secure execution
environments must perform self-protection: it must ensure that the encapsulation is not
violated due to errors on the interface trust boundary, and it must perform access control
(authentication and authorization).

Since the API of any software component is the entry point to its functionality, it must be
well-tested. This is especially true for software where the API represents a trust boundary,
such as for software running in secure execution environments. Testing APIs is a highly
challenging problem because most APIs are stateful. This means that prior calls can
influence the behavior of following calls. When testing stateful APIs, one has two consider
two dimensions: 1) The individual inputs to a single API call, 2) and the ordering of the
call sequence, taking interdependencies into account. Both dimensions already represent a
considerable search space on their own. This makes testing of stateful APIs a long-standing
open research topic [Ait02; Bal+18; CH00; KLT01; Man+21; Thu+11; Xie+05].

When it comes to automated test input generation, there are two major techniques that
have been developed over the years: symbolic execution [Bal+18] and fuzzing [Man+21].
Both techniques received significant attention from the research community and have had
tremendous success in identifying bugs and security vulnerabilities [Cha+12; Zal]. In the
remainder of this section, we discuss both techniques in the context of automatically testing
software APIs.

2.2.1 Symbolic Execution
Symbolic execution has become one of the standard techniques in software analysis, including
high coverage testing and vulnerability analysis [Bal+18; CDE08; Cha+12; Sho+16]. While
on in the 70s as a generalization of testing [BEL75; Kin76], it gained traction only recently
with advances in satisfiability modulo theories (SMT) solving [BT18; MB08] and high-

17



Chapter 2 Background on Software Vulnerabilities

1 void foobar(int a, int b)
2 {
3 int x = 1, y = 0;
4 if (a != 0) {
5 y = 3 + x;
6 if (b == 0) {
7 x = 2 * (a + b);
8 }
9 }

10 assert(x - y != 0);
11 }

if (a != 0)

assert(x-y != 0)y = 3+x

if (b == 0)

x = 2*(a+b) assert(x-y != 0)

assert(x-y != 0)

SAT with 

UNSAT

UNSAT

Figure 2.6: Example for an execution tree spanned by the symbolic execution of the depicted
function foobar [Bal+18] with α and β being the symbols assigned to the input
variables a and b, respectively. Only in the left-most path in the execution tree
is it possible to violate the assert statement. The symbolic execution produces
a satisfying assignment, i.e., concrete values that can be passed as inputs and
violates the assertion.

performance SMT solvers being widely available [Bar+11; Dut14; MB08]. The idea behind
symbolic execution is to generalize testing by executing the program within a symbolic
domain instead of concrete values, e.g., the program operates on symbols representing
numbers instead of actual numbers. This allows the symbolic execution to reason about
classes of inputs at once instead of executing tests one by one. In turn, the symbolic execution
discovers complex edge cases that often do not come up during normal testing.

In practice, this is done by replacing variable inputs with placeholders, fresh symbolic
values, at the start of the execution of a program. The program then executes with
the symbolic values as inputs. For example, a fresh symbolic value for a 32 bit integer
represents the set of all possible integer values. Assignments to other variables propagate
the symbolic values to other variables during symbolic execution. Arithmetic expressions
result in symbolic formulas over the involved symbolic values and constants. Conditional
expressions are especially challenging during symbolic execution. At every branching point in
the program, the symbolic execution engine must decide which branch to take. It does so by
checking the satisfiability of the path constraints π, representing all constraints on the input
symbols gathered. Taking a branch adds another constraint to the set of path constraints. If
both branches are feasible, the symbolic execution engine must fork the execution and take
both branches.

Figure 2.6 shows an example of the state tree spanned by the symbolic execution of
the depicted function foobar. In this example, the symbolic execution branches into both
directions at each of the if-conditions.

As we saw in the example in Figure 2.6, symbolic execution spans a tree over all possible
execution paths of the program. In small programs such as the example in Figure 2.6, a full
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exploration of all paths is feasible. However, in large real-world programs, the execution
tree quickly becomes too large to explore fully. Several common features of real-world code
quickly introduce a path explosion problem: nested loops, symbolic memory dereferences,
input-dependent indirect jumps, etc. Because the symbolic execution engine must keep both
states in memory at every conditional jump, symbolic execution quickly becomes memory-
bound, making breadth-first traversal of the execution tree infeasible. As such, modern
symbolic execution engines feature a combination of depth-first traversal and heuristics to
guide the symbolic execution to potentially interesting program locations. Dealing with the
path explosion problem is a major research direction in symbolic execution, which spawned
new techniques such as state merging, computing symbolic summaries, different memory
models, and many more techniques [Avg+14; Bal+18; Kuz+12].

Furthermore, to be practically useful in real-world software, symbolic execution must
accurately model side effects caused by the environment. For example, most software expects
a standard OS environment, where the symbolic execution engine must simulate and support
all OS system calls and manage a simulated file system [Bal+18]. To avoid state explosion,
many symbolic execution engines also hook and model common library functions [Sho+16].

Concolic Execution The idea of concolic execution is to mix concrete and symbolic program
execution. As such, the name of this variant of symbolic execution is a portmanteau of
the words “concrete” and “symbolic”. Concolic execution is often used synonymously with
dynamic symbolic execution and usually acts as a test-case generator [Cad+08; GKS05;
GLM12]. In general, most concolic execution engines will execute a concrete input that drives
the symbolic analysis along a certain program path. Symbolic values and path constraints
are tracked alongside the concrete inputs as meta-data. The concolic execution engine can
then utilize the gathered path constraints to flip one or more branches along the concrete
execution.

One of the major advantages of concolic execution is that the environment must not be
modeled explicitly. Instead, since the execution is driven by the concrete execution, the calls
into the environment simply execute normally. Of course, this comes at the expense of not
being able to determine faults that are due to unexpected data returned by the environment.

The many scalability problems of symbolic execution make it harder to apply standard
static symbolic execution to modern software. As such, most symbolic execution approaches
trade soundness or completeness of the analysis for shorter analysis times. Nevertheless, sym-
bolic execution has been successfully applied to identifying bugs and security vulnerabilities
in a wide range of software [CDE08; CKC11; Sho+16].

2.2.2 Fuzz Testing
Over the last years, fuzzing has become a huge research topic in both the software engineering
and security communities [Man+21]. Driven by the practical usefulness and success in
identifying a large number of impactful bugs, fuzzing has been adapted to many types of
software. Historically, there have been two major branches of fuzzing approaches: generative
and mutational. Generative approaches utilize an input specification to probabilistically
synthesize inputs that conform to the specification. Mutational approaches start with a set
of seed inputs and perform small mutations, slightly changing the input.
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Generative Fuzzing Generative fuzzing utilizes an input specification, sometimes called a
model, to generate new inputs from the specification. The most prominent class of fuzzers
in this area is grammar fuzzing. Grammar fuzzers are especially well suited to test parsing
code where a formal grammar is already available. A formal grammar can be used to decide
whether a sentence is valid, but it can also produce a valid sentence in the language described
by the grammar. As such, it is only natural to turn the grammar used by a parser around
and utilize them to test the parser. A grammar fuzzer then performs random sampling on
the grammar to generate valid inputs. Typically, the grammar used by the fuzzer slightly
deviates from the grammar used by the parser to make the fuzzing more efficient and
more likely to trigger bugs [Asc+19a]. As such, grammar fuzzing has been successfully
applied to a wide range of software, such as programming language compilers [Asc+19a;
HHZ12; Yan+11], standardized serialization formats, or even testing a single function [CH00].
The biggest downside is that a precise specification of the input must be available. While
inferring input grammars from static and dynamic program features has been researched in
the past [Bas+17; GMZ20; HZ16; KLS21], a different approach to fuzzing has proven more
effective for scenarios where no input specification is available.

Mutational Fuzzing Mutational fuzzing has become the de-facto standard approach to
testing binary-format parsers. Here, the fuzzer takes a set of known valid input files, the
seed corpus, and performs small-scale mutations, such as bit-flips or character replacements,
to produce new inputs. Already a blind mutational approach can identify a large set of
bugs [RDMSA]. The results of a mutational fuzzer highly depend on the quality of the seed
corpus and on the capability of the fuzzer to quickly execute many of the generated inputs.
While mutational fuzzers are well suited to test the robustness of parsers, they tend to
uncover only shallow bugs, i.e., they mostly exercise the error handling code of the parsing
components.

However, mutational fuzzing becomes exceptionally effective when combined with feedback
on the execution of the target program. For example, the famous fuzzer AFL [Zal] utilizes
code coverage feedback to distinguish inputs. For every generated test case, the fuzzer
receives feedback about the code coverage that the test case triggered in the target program.
This allows the fuzzer to distinguish and classify inputs according to the code reached in the
target. Fuzzers, such as AFL or libfuzzer, utilize this mechanism to incrementally extend
the seed corpus with new interesting inputs, i.e., those that trigger new code coverage.
Furthermore, this allows the fuzzer to shrink individual inputs to discard bytes that do not
affect which code executes. Similarly, the fuzzer can now shrink a whole corpus, removing
unnecessary test cases that trigger only code already covered by other test cases in the
corpus. Since the feedback-driven mutational fuzzer can now incrementally build a corpus of
interesting inputs, the fuzzer can now reach code paths using small-scale mutations. For
example, Zalewski [Zal14] demonstrated that AFL is capable of synthesizing complex file
formats, such as JPEG images, given only code-coverage information of a JPEG parsing
library.

More recently, several fuzzers were proposed that combine aspects of mutational and
generative fuzzing. For one, many generational fuzzers adopted coverage feedback to
distinguish useful inputs. Furthermore, this allows one to extend the concept of mutations
to the grammar level: the fuzzer now parses, mutates, and emits the parse tree of the
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target grammar as source code. This was shown to be more effective than traditional purely
generative grammar-based fuzzers [Asc+19a; Wan+19b]. On the other hand, mutational
fuzzers have also approached generational fuzzers by discovering input specifications driven
by the mutational fuzzing process [Bla+19].

Hybrid Fuzzing A hybrid fuzzer augments a coverage-guided fuzzing approach with more
involved program analysis techniques, such as symbolic execution or taint tracking. This
allows the analysis to explore large parts of the program using lightweight coverage-guided
fuzzing and only resort to heavy-weight analyses whenever the fuzzer fails to make further
progress.

Even though mutational fuzzers receive feedback about code coverage, they lack any
semantic understanding of the input bytes they mutate. For example, such a fuzzer cannot
determine which bytes need to be mutated to discover new code coverage. Using taint
analysis, one can determine the relationship between input data and data processed in the
program. For example, by performing taint analysis, a certain comparison can be traced
back to the respective bytes in the input bytes. The fuzzer can then focus on mutating those
bytes that influence a certain branching condition instead of randomly choosing the input
bytes to mutate [Bek+12; CC18; Raw+17].

While taint tracking gives the fuzzer the information on what part of the input to
mutate, it does not give information on how to mutate the input. In contrast, symbolic
execution techniques gather path constraints and can generate inputs that satisfy even
complex constraints on the input. A notable example here is Driller [Ste+16], which
combines coverage-guided fuzzing based on AFL [Zal] with concolic execution with the Angr
framework [Sho+16]. Conceptually, Driller splits code into regions called compartments. To
determine a compartment, Driller first executes the fuzzing component. A compartment is
defined as the code that is exercised by the fuzzer during the first phase. Once the fuzzer
fails to make further progress in terms of code coverage for a certain amount of analysis
time, Driller invokes the concolic execution engine to discover new compartments. It does so
by solving complex path constraints gathered along the paths already exercised by the fuzzer
and then flips those branches that lead to code outside of the current compartment, i.e.,
those that trigger new code coverage in the fuzzer. Driller then repeatedly cycles between
the fuzzing and concolic execution components.

Somewhat counter-intuitively, in terms of identifying real bugs in complex code bases,
smarter mutation strategies such as those based on heavyweight program analysis tech-
niques [GLM12; Raw+17] are often outperformed by more lightweight approximative mu-
tations that can be applied at a high throughput [Asc+19b; Cho+19; Fio+20]. However,
most recently, advances in concolic execution have been proposed to speed up hybrid fuzzing.
For example, one can exploit the fact that a concolic executor is most commonly used in
conjunction with a coverage-guided fuzzer. This allows the concolic executor to simplify the
symbolic formulas in an unsound manner and offload the task of verifying the input to the
coverage-guided fuzzer [Yun+18]. Furthermore, the overhead of running the program in a
fully emulated interpreted symbolic environment [Sho+16] can be reduced by instrumenting
directly on the assembler level [Yun+18], instrumenting the program for concolic execution
in the compiler [PF20], or in the just-in-time (JIT) translation layer of dynamic binary
translation tools [BCD21b; PF21]. As an additional optimization, approximative solving
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optimized for constraints gathered during concolic execution has been proposed [BCD21a;
Che+22] to replace expensive queries to SMT solvers.

Fuzzing Stateful APIs The goal of fuzzing is to generate a sequence of API calls, where
(1) the final call in the sequence will trigger a bug, (2) while the preceding calls set up the
state of the target such that the bug can be triggered. This results in a very large search
space for the analysis tool, as one must consider potentially infinite call chains. Even if the
length of a call chain is bounded to a reasonable number during fuzzing, the fuzzer must still
search along the two different directions of individual function input and function ordering.
However, coverage-guided mutational fuzzing allows the fuzzer to effectively search this huge
search space. Most of the function sequences will be redundant and not lead to distinct
code coverage, allowing the fuzzer to quickly discard these generated call chains. However,
code coverage is not always sufficient to distinguish the inputs, as different interesting
combinations often do not lead to different coverage. As such, a fuzzer must carefully strike
a balance between incorporating additional coverage information, such as context-sensitive
code coverage [CC18; Fio+20], and unnecessarily increasing the size of the current corpus.

Additionally, the fuzzer often has to take interdependencies between the calls into account:
data dependencies from return values of prior calls to parameters of following calls or
control dependencies between calls. Data dependencies often occur when the API uses
special identifiers to refer to resources. For example, the Linux kernel extensively uses file
descriptors at the system call interface. Passing invalid file descriptors is very likely when
considering it as an integer. So the fuzzer must ensure to use only those file descriptors,
which the kernel has previously returned. Similarly, control dependencies encode semantic
relationships between calls. For example, in the case of file descriptors, the fuzzer should
avoid using file descriptors that have been closed already. Similarly, when fuzzing an
object-oriented API, the fuzzer should not utilize objects that have not been constructed or
initialized.

However, fuzzing APIs has several advantages in contrast to static analysis methods.
Fuzzing has the advantage that it features a very low rate of false alarms. Since the fuzzer
produces a call sequence that sets up a vulnerable state during fuzzing, it is highly likely the
same call sequence also moves a real deployment into a vulnerable state. Furthermore, the
generated API call sequence can be easily replayed and debugged by an analyst or developer.

In the following we describe the taxonomy as introduced by Green et al. [GA22]. This
taxonomy categorizes fuzzers into one of four different types of API fuzzing approaches:

Manual Harness Coverage-guided fuzzing has been previously used to test interactive APIs.
To work around the fact that most fuzzers simply provide and mutate one input byte
buffer, a special fuzzing harness must be constructed. Usually, the harness performs
additional parsing of the fuzzer-provided byte buffer and deserializes a sequence of
API calls, i.e., the harness acts as an ad-hoc interpreter for the raw bytes provided by
the fuzzer. Several libraries have been created to easily implement structured fuzzing
based on the mutated byte buffer inputs provided by current fuzzers. Two examples
for such libraries are the FuzzedDataProvider of the libfuzzer project [LLV] and the
arbitrary library for rust projects [Dev22] The downside of this approach is that even
though the aforementioned libraries reduce the manual effort, it still requires significant
effort to create a well-working fuzzing harness. Additionally, some mutations on call
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sequences or constraints between calls cannot be easily expressed with this approach,
as the fuzzer itself is usually unaware of the structure of the input. This can result in
the fuzzer unnecessarily and repeatedly exercising the same error-handling branches.

Harness Generation Since manual harnessing requires significant effort, several research
projects proposed methods to automatically synthesize a fuzzing harness. For example,
FUDGE [Bab+19] and FuzzGen [Isp+20] mine large C/C++ code bases to extract
code patterns and API usages to automatically generate a fuzzing harness. However,
such learning approaches rely on the quality and availability of the code that is
mined. Other approaches use dynamic API tracing to detect legitimate call sequences
and automatically generate a fuzzing harness [HC17; Jun+21]. However, all these
approaches attempt to generate a traditional fuzzing harness using a single fixed
sequence of API calls. The fuzzer is then used to mutate the input data of the fuzzing
harness. Such automated harness generation makes it significantly easier to apply
fuzzing to existing software projects. However, this type of generated harness is not
capable of exposing bugs that result due to unexpected combinations of API calls.

Code Generation Another approach to testing APIs is to directly synthesize the source
code that exercises the APIs. This approach is usually taken when fuzzing inter-
preted language runtimes, where it is beneficial to test the interpreter and standard
library API in conjunction. This approach has been applied to many interpreted
languages [Asc+19a], with a special focus on sandboxed runtimes such as JavaScript
runtimes of web browsers [Gro18; HOC19; Rud07]. Usually, such fuzzers follow a
grammar-based fuzzing approach, sometimes enhanced with semantic information to
avoid generating invalid API call sequences. This approach works well for interpreted
languages, where the input is naturally source code and is quickly executed. However,
for compiled languages such as C/C++ or rust, this approach would take too long as
each test case would need to go through the slow compilation and linking stages for
every test case. While a grammar-based generative approach has been used to test C
compilers [Yan+11], it is not practicable for testing API sequences as the low test case
throughput would decrease fuzzing effectiveness.

Dynamic One crucial observation about manual fuzzing harnesses is that they often imple-
ment ad-hoc interpreters that turn raw input bytes into structures or dispatch to the
relevant API. This can be generalized to an interpreter-based fuzzing harness, which
has been implemented in various projects [SYZK; GA22; Sch+21; Sch+22]. Essentially,
the fuzzing harness now becomes an interpreter for a bytecode format that specifies
the call sequences as a sequence of opcodes executed by the interpreter. The fuzzer
now mutates the bytecode program for the interpreter and its associated data. Having
a well-defined generic format means that the fuzzer can be enhanced with mutations
that respect the structure of the bytecode format. This avoids unnecessarily exercising
error paths in the fuzzing harness and allows for more effective mutations on the call
sequence. Additionally, the bytecode format can be treated as a graph of opcodes
with associated data. This allows modeling control- and data-flow constraints between
API calls. For example, a file must be opened before writing to it and should not be
written to after it is closed. This allows expressing semantic constraints about the API
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usage and further increases fuzzing efficiency as fewer invalid test cases are processed
during fuzzing.
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CHAPTER 3
BACKGROUND ON SECURE EXECUTION ENVIRONMENTS

In this dissertation, we focus on software security within secure execution environments:
limited, isolated, and secure environments that execute highly critical parts of a larger
software system.

Definition: A secure execution environment is an execution environment that
isolates and protects the integrity of both code and data of the software running
within the execution environment. Additionally, the secure execution environment
provides some form of attestation, facilitating secure communication with software
components inside of the secure execution environment.

This definition does not include confidentiality. This distinguishes this definition of secure
execution environments from other concepts such as confidential/trusted computing, which
also provide some form of confidentiality. All modern trusted computing technologies, such
as TEEs, also provide integrity protection. Therefore, secure execution environments are
a superset, i.e., include all trusted computing technologies. However, by excluding the
confidentiality requirements, our definition of secure execution environments also covers
interesting secure execution environments, such as those featured in distributed systems
(e.g., blockchains with smart contracts).

In this dissertation, we cover two specific secure execution environments. It is necessary
to understand the technical details of these two secure execution environments. We discuss
the technical details of the SGX, which offers a hardware-backed TEE implementation.
Section 3.1 gives details on the extension to the x86 instruction-set architecture (ISA) that
makes up SGX. SGX offers a confidential and integrity-protected computing environment:
in theory, an enclave developer can completely shield the enclave from the host system.
This covers all data used by the enclave, which can be protected using cryptographic
measures that seal and bind data to a specific enclave. While this also extends to hiding the
enclave’s code by providing the actual enclave logic as encrypted code that is only decrypted
inside the shielded enclave environment, we later only tackle the more common use case of
non-confidential code.

We continue with a discussion of the Ethereum execution environment in Section 3.2,
including the EVM architecture and the particularities of interactions with and between smart
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contracts. In contrast to SGX, the Ethereum execution environment for smart contracts
exhibits many properties which result from the execution of code as part of the consensus
protocol of the underlying blockchain system. For example, Ethereum has no notion of
confidentiality, as everything on the blockchain is considered public. However, the consensus
protocol ensures a high degree of integrity, as the consensus protocol will eventually ensure a
unified view of the execution state of a smart contract across the whole network. Additionally,
a smart contract is uniquely identified using an address that includes a hash of the code and
is unique for every deployment. Using this address it is trivial to perform remote attestation.
Finally, we conclude the background on secure execution environments by providing a
comparison between the Ethereum and SGX execution environments in Section 3.3.

3.1 Trusted Execution using Intel Software Guard Extensions
Intel introduced the SGX extensions [CD16; Hoe+13; Intel4; McK+13] for the Intel x86
architecture as a new generation of trusted computing extensions, following prior attempts
at trusted computing like TPM and TXT. In contrast to prior solutions, SGX provides an
even further reduction of the TCB. Essentially, the TCB contains the CPU, the firmware
contained in the CPU, and the code running inside of the enclave. Notably, the TCB does
neither include the kernel nor the hypervisor running on the CPU. In fact, the threat model
of SGX explicitly states those to be untrusted. Using secrets securely stored in Intel hardware
as a root of trust and a special quoting enclave released by Intel, each SGX enabled Intel
CPU can measure SGX enclaves and produce local and remote attestation reports. These
attestation reports allow an enclave to verify its own identity and integrity to remote parties.

One of the primary use cases of SGX is confidential computing in cloud scenarios. On the
one hand, organizations want to leverage the flexibility of cloud computing as part of their
IT systems. On the other hand, due to regulatory compliance or security risks, sensitive
data cannot be stored outside the organization’s infrastructure. Here, SGX offers a possible
solution: The cloud computing hardware utilizes the SGX extension to load and measure
an enclave provided by the data owner (i.e., the organization that wants to confidentially
use cloud computing). With remote attestation, the enclave can prove to the data owner
that it was correctly loaded. Furthermore, the data owner can establish a cryptographically
secured channel that directly terminates inside the attested enclave. Since the enclave code
is considered trustworthy, the data owner can transfer the encrypted data to the enclave
running on hardware operated by the cloud provider. Even if the cloud provider, or its
software stack, is compromised, the data remains confidential as long as the SGX enclave
operates correctly. Using the binding and sealing mechanisms of SGX, the enclave can
cryptographically ensure that data can only be accessed on a certain CPU or by certain
enclaves.

3.1.1 Enclave Lifecycle
Loading and Initialization On a technical level, a SGX enclave is a memory region embedded
into an existing x86 virtual address space. More specifically, every SGX enclave is attached
to a host process, a normal user space process featuring a standard x86 virtual address
space. To load an enclave, the host process asks the kernel to set up the address space for
the enclave. This means that the kernel will allocate the required number of pages from a
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special memory area reserved for SGX enclaves called enclave page cache (EPC). The kernel
updates the host process’ page tables to contain the necessary mapping for the enclave. The
kernel must leverage special instructions to assign pages from the EPC to an enclave. These
instructions initialize the enclave pages given untrusted pages. The SGX enabled CPU will
record additional metadata, such as a mapping that associates physical pages with their
enclaves. This allows the CPU to ensure that no page is mapped twice into different enclaves.
Contrary to normal processes, the CPU must perform several sanity checks to prevent a
malicious OS kernel from attacking enclaves by abusing the paging mechanism. Once the
enclave is loaded, the CPU will perform the measurement of all enclave pages and their
ordering. This measurement is then later used for local and remote attestation.

Runtime Every SGX enclave features a fixed set of entry points. The host application
must utilize a special SGX instruction, EENTER, to transfer control to the enclave. The
other way around, the enclave must also utilize the special EEXIT instruction to return
control to the host application. The entry points are defined in the so-called Thread Control
Structure (TCS). However, when considering enclaves developed with the Intel SGX SDK,
most enclaves only define a single entry point that is provided by the Intel SGX SDK. We
defer a discussion of the particularities of the Intel SGX SDK in Section 3.1.3.

The enclave can also be exited using the asynchronous enclave exit (AEX) mechanism.
This mechanism is triggered if a hardware exception occurs or an interrupt is triggered. The
AEX mechanism will save the current enclave state (i.e., registers) into dedicated enclave
memory before exiting the enclave mode of the CPU Afterward, and similar to normal
user-space software, the usual exception-handling mechanism of the operating system is
performed. However, in contrast to normal user space, the enclave’s execution must be
resumed with the ERESUME instruction.

Teardown Finally, after the enclave finishes computation, the OS can utilize the dedicated
EREMOVE instruction to deallocate the enclave-associated pages and also delete the
corresponding control structures. The corresponding pages can be reused for a newly loaded
enclave only after the enclave is destroyed.

3.1.2 Threat Model and Attacks
The threat model of SGX features a very strong attacker: the whole software stack running
on the CPU is considered untrusted. This means that throughout the SGX threat model, we
must assume that the attacker has all capabilities of the kernel and hypervisor. At the same
time, the enclave features no elevated privileges across the system. More specifically, SGX
enclaves are associated with a normal user-space process. However, they lack the capability
of interacting with the outside, i.e., enclaves cannot perform system or hyper calls.

Furthermore, SGX also considers large parts of a system’s hardware as untrusted. More
specifically, the CPU die is considered trusted, but everything connected to the CPU package
is considered untrusted. For example, the CPU caches are considered trusted, while the main
DRAM memory is considered untrusted. As a consequence, the SGX technology enforces
confidentiality of enclave pages by encrypting data that is written to main memory using an
encryption key specific to the CPU. However, to speed up execution, the internal caches

27



Chapter 3 Background on Secure Execution Environments

of the CPU are not encrypted, and the memory encryption engine is applied only to data
written outside of the CPU package, i.e., main memory.

However, data confidentiality is insufficient to secure SGX enclaves. Additionally, SGX
features several measures to ensure integrity for enclave pages. First, SGX uses access
control checks to prevent any writes to the EPC. Whenever the CPU is not in enclave
mode, any access to the EPC results in a hard CPU halt. Second, SGX also features
cryptographic protection of memory integrity using key-dependent hashing and Merkle trees
over enclave pages. This cryptographic protection also protects enclave memory against
physical tampering. Notably, the official SGX threat model does not consider hardware
attacks as in-scope. In that regard, cryptographic memory protection is not strictly necessary
to comply with the official threat model of SGX. Interestingly, Intel introduced a variant
of SGX called scalable SGX that lifts a hard limit of 128 Mbyte of EPC memory. However,
this comes at the cost of disabling the cryptographic memory integrity protection [Sim].

Enclaves are as privileged as the host process in whose address space they are loaded. This
is important to allow the operating system to defend against malicious enclaves. Since the
operating system has limited introspection capabilities into SGX enclaves, it is important
for the operating system to have the capability to isolate an enclave. However, the enclave
itself does not have the capability to interact with the operating system because enclaves
are not allowed to issue system calls. Instead, enclaves must rely on their associated host
application to forward any data to the relevant system calls. The SGX technology could
also be abused by malware authors to launch attacks [CD16; Sch+17]. However, due to the
decision to associate enclaves with normal user space processes, the operating system can
apply standard process isolation and sandboxing techniques to prevent the enclave from
damaging the host system.

3.1.3 Enclave Programming Model
With the launch of the SGX technology, Intel also provided the Intel SGX SDK as the
first development kit for SGX enclaves. The Intel SGX SDK has been established as the
de-facto standard and is often used to provide more high-level frameworks to developers [Asy;
TPV17].

The Intel SGX SDK features infrastructure to develop enclave code. The programming
model of the Intel SGX SDK exposes an enclave as a secure library. Similar to other dynamic
libraries, an enclave is loaded by a normal user space process and exposes a set of API
endpoints (i.e., library functions) that can be called by the regular untrusted user space
process. In fact, the Intel SGX SDK automatically generates code that makes the transition
from the host application to the SGX enclave as easy as a library call. Such a transition is
dubbed ECALL by the Intel SGX SDK. However, the Intel SGX SDK also supports calls
in the other direction, i.e., calls from the enclave to the host application. Such calls are
typically used by the enclave to request input/output (I/O) operations. The Intel SGX SDK
refers to this type of call as an OCALL.

To facilitate this programming model, the Intel SGX SDK adds standard support code and
generated code to both the host application and the enclave. Conceptually, the support code
is split into the trusted runtime (TRTS) in the enclave and the untrusted runtime (URTS)
in the host application. To generate the support code, the build system relies on an interface
specification, which is written by the enclave developer in the enclave definition language
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(EDL) language. The enclave developer specifies the public interface of the enclave code. The
build system automatically generates wrappers around these interface functions for the URTS.
The host application can call these wrapper functions like normal C functions. The wrappers
of the URTS then transparently pack the arguments according to the calling convention
expected by the TRTS. The URTS enters the enclave using the SGX specific instructions.
Now the TRTS takes over and performs unpacking and validation of the parameters of the
ECALL. In fact, the TRTS only supports a single entry point and multiplexes all logical
ECALLs. After unpacking and validation, the TRTS passes control to the ECALL handler
that is specified by the enclave developer. When the ECALL handler finishes execution,
control is passed back to the TRTS, which writes the returned data back to untrusted
memory, before exiting the enclave to continue execution in the URTS. To perform an
OCALL the flow is quite similar, except that now the TRTS begins by packing the OCALL
parameters to untrusted host application memory. Furthermore, the TRTS unpacks and
validates the returned data of an OCALL. Technically, a return from an OCALL can be
thought of as a special ECALL and reuses much of the same mechanisms.

The EDL Interface Specifications The Intel SGX SDK uses the EDL, a custom specification
language, to define the ECALL and OCALL interface of an enclave. More specifically, the
EDL file is similar to a header file in the C language but with syntax to represent SGX
specific terminology. For example, it uses the trusted and untrusted keywords to define
ECALLs and OCALLs. Each ECALL or OCALL is defined by the function prototype akin
to a C function declaration. However, in addition to the usual C parameter type definition,
EDL features additional annotations. For example, Figure 3.1 shows various ECALL and
OCALL definitions.

Based on the provided EDL files, the Intel SGX SDK generates the wrapper code to connect
the ECALL stubs in the host application with the ECALL handler in the enclave. When
the host application calls an ECALL stub, the auto-generated code packs the parameters of
ECALLs into auto-generated data structures in the host application memory. Control is then
transferred to the TRTS and the auto-generated code on the enclave side, which unpacks and
validates the parameters from host application memory and passes control to the ECALL
handler. The enclave developer can specify various types of parameters in EDL, including
pointer parameters and structures. Especially for pointer parameters, the Intel SGX SDK
must be able to determine the size of the underlying data to copy it to enclave memory
before passing it to the ECALL handler. Thus, every pointer parameter is also annotated
with how the size is to be determined. Figure 3.1 shows several of these size annotations,
e.g., constant size, C-style string length, and a second length parameter. Currently, the
Intel SGX SDK supports standard C data types, such as basic integers types, composed
data types (i.e., struct) without nested pointers, enumerations (i.e., enum), null-terminated
strings, and pointers to arrays of fixed length.

Figure 3.1 shows various features of the EDL language. For example, here, a void* is
passed to the enclave. The Intel SGX SDK requires a length annotation to determine the
underlying buffer size: [in, size=100]. This annotation specifies that the underlying buffer
is 100 byte. As such, the Intel SGX SDK will generate code that copies this 100 byte buffer
from the untrusted host application to enclave memory. The ECALL handler is then passed
a void*, that points to the corresponding buffer in enclave memory.
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1 enclave {
2 struct foo_t {
3 uint32_t part1;
4 uint64_t part2;
5 };
6

7 trusted { // ECALLs
8 public void ecall_size1( // explicit size
9 [in, size=100] void* ptr);

10 public void ecall_size2( // variable size in len
11 [in, size=len] void* ptr, size_t len);
12 public void ecall_user( // dangerous user_check
13 [user_check] void* ptr);
14 // passing a struct by value
15 public int ecall_strct(struct foo_t foo);
16 };
17

18 untrusted { // OCALLs
19 void untrusted_print([in, string] const char *msg);
20 };
21 };

Figure 3.1: Example for the EDL syntax.

However, there are many particularities that have to be considered when writing EDL
interface specifications. The most particular feature is the [user_check] features, which
completely disables any validation by the Intel SGX SDK. This annotation is used to pass
in raw pointer parameters to the ECALL handler. This leaves the burden of validating
this data to the enclave developer. In Chapter 4, we discuss several memory corruption
vulnerabilities that are due to missing validation of such raw pointer ECALL parameters.

Furthermore, the Intel SGX SDK does not perform deep copies of compound data types.
In fact, any struct is treated as a buffer of a fixed size. As a consequence, the Intel SGX
SDK also does not support passing container types, such as the containers available in the
C++ standard library (i.e., vector or map).

3.1.4 SGX Vulnerabilities
The security of SGX has been extensively studied. We have seen two orthogonal research
directions: (1) attacks against the SGX technology, and (2) attacks against the software
inside of SGX enclaves.

Numerous works study the security of the SGX technology itself. SGX is implemented
as an extension to the regular x86 ISA. In recent years a significant amount of work has
studied the security of the ISA implementations, i.e., the micro-architecture. As such, there
exist many attack vectors that exploit micro-architectural features, such as caches, branch
predictors, port contention, and so on [Can+19; Gru20]. Most micro-architectural attacks
require the attacker and victim to execute on the same machine, which makes this type
of attack typically hard to execute. However, the threat model of SGX offers the perfect
environment for micro-architectural attacks: by design, the attacker, the untrusted host,
executes on the same CPU as the victim, the enclave. Furthermore, in SGX, the attacker has
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an incredible amount of control over the enclave, which is executed as part of an unprivileged
user space process.

We have seen multiple attacks that exploit micro-architectural features to leak data from
SGX enclaves, such as cache attacks [Bra+17] or transient execution attacks [Che+19a;
Van+18]. At least two of the attacks also targeted special enclaves developed by Intel. As
part of the remote attestation, a special SGX quoting enclave issued and signed by Intel is
used to obtain and sign a measurement of a local enclave. Attacking these special enclaves
with microarchitectural side-channel attacks allowed researchers to dump the signing keys
used by these enclaves [Sch+20a; Van+18], which allows the attacker to subvert the whole
remote attestation protocol. Intel has continuously deployed new defenses against various
micro-architectural attacks against their CPUs and SGX in particular. Given the current
state of attacks, it is questionable whether the SGX technology can hold up to its threat
model in practice.

A second line of research has assessed the security of the enclave code itself. The code
running inside a SGX enclave also faces a new threat model due to the limited control over
its own execution. Enclaves are prone to so-called controlled-channel attacks [XCP15], a
deterministic form of side-channel attack. For example, a SGX enclave must assume that
it can be interrupted by the host OS at every single instruction [VPS17]. Furthermore,
the enclave must assume that the host OS knows exactly which memory pages are kept
in main memory and which have been moved to disk. This allows the attacker to deduce
which parts of the code have been executed and which of the data pages are accessed. Even
worse, combined with side-channel attacks, a controlled-channel attack can reconstruct the
precise control flow of an SGX enclave [Mog+20]. In turn, this means that secret-dependent
branching can lead to an enclave directly leaking the secret to the attacker.

However, the SGX environment poses further challenges for the enclave software: the
enclave needs to securely transition between the untrusted and trusted execution domain.
While the hardware enforces isolation, the security of the transition must be secured in
software. The transition between the two execution domains is defined by two parts: the
application binary interface (ABI) and the API. The ABI defines the low-level calling
conventions used to pass data via registers or memory between the two domains. One
abstraction level higher, the API defines a logical interface that usually resembles a function
call. Both have been targeted by prior work [Ald+20; Van+19]. It was shown that lacking
sanitization of status flag registers or the status of the floating point unit could be abused to
leak data from an enclave. Furthermore, several enclave runtime environments lacked proper
automatic sanitization of data passed to the enclave or returned by calls to the untrusted
world.

The first programming environment for SGX was the Intel SGX SDK, which targets
the C/C++ language. While this offers the greatest flexibility and compatibility, it also
means that memory safety is not automatically enforced in SGX enclaves. As such, prior
work has analyzed exploit techniques targeting memory corruption in the context of SGX
enclaves [Bio+18; Lee+17]. Similar to classical x86 software, SGX enclaves are also prone
to code-reuse attacks such as return-oriented programming (ROP). However, there was no
prior investigation into the prevalence of memory corruption errors. In Chapter 4, we will
discuss our results when analyzing several enclaves and the new vulnerability pattern that
we found.
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3.2 The Ethereum Execution Environment
A blockchain commonly refers to a distributed ledger, which records transactions and is
replicated across all nodes participating in the network. Traditionally, transactions involve
transferral of the currency associated with the blockchain platform but can also contain other
arbitrary data. Typically, a transaction is defined to contain a sender, a receiver, the amount
to be transferred, optionally attached data, and a digital signature over the prior transaction
data created by the sender. Multiple transactions are usually collected into a block. Multiple
blocks are then chained using cryptographic hash functions. Using a consensus mechanism,
such as the Proof-of-Work mechanism introduced by Bitcoin [Nak08], the network converges
to the longest block sequence as the active state of the ledger. This process is called mining
and usually involves rewarding the miner in terms of new cryptocurrency. As the first major
blockchain platform, Bitcoin has already added support for attaching arbitrary data to
transactions. Soon this was extended to attach program code to transactions: so-called smart
contracts. Smart contracts in Bitcoin are written in stack-based transaction scripts. These
scripts were initially intended only for basic functionality: defining the eligible owner(s) and
also transferring this ownership. However, combined with Bitcoin’s time-lock feature, more
complicated protocols can be implemented via the Bitcoin scripts. While the restrictions of
the bitcoin scripting language only allowed very specific applications, the idea of executing
code on top of a blockchain prevailed.

Ethereum [Woo19], a second-generation blockchain system, introduced a Turing-complete
programming environment for smart contracts alongside their cryptocurrency Ether. Fur-
thermore, smart contracts are designed to be first-class citizens in the Ethereum blockchain:
similar to normal user accounts, a smart contract is associated with an address, can manage
its own currency balance, and can issue transactions to other accounts (including smart
contracts).

While, for the most part, smart contracts are first-class citizens in the Ethereum blockchain,
there are several differences between a smart contract and an externally-owned account
(EOA). Smart contracts are strictly reactive: any smart contract execution is triggered
by an initial transaction issued by an EOA, e.g., a normal user. Although functionally
equivalent, transactions created by a smart contracts are treated a bit differently in the
Ethereum protocol. They are usually called internal transactions as they are not explicitly
recorded in the blockchain but can only be observed as sub-transactions when executing
transactions issued by an EOA. The EOA that issues a transaction also pays the gas fees
for all internal transactions that might be executed due to smart contracts reacting to the
top-level transaction. Additionally, smart contracts can store state directly on the blockchain,
which is impossible for EOA accounts.

Like traditional contracts, smart contracts are also considered immutable once they have
been created. All parties that interact with a smart contract commit implicitly to the smart
contract’s code. Similar to traditional contracts, changes to smart contracts require creating
a new contract. We discuss the problems of smart contract immutability and upgrade
strategies in detail in Chapter 7.

Due to the distributed nature of a blockchain platform, several restrictions have to be
imposed on the execution of Ethereum smart contracts:

1. Smart contract execution must be completely deterministic.
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2. Smart contract execution must be bounded in space and time.

We will now discuss these two restrictions and how they are implemented in Ethereum.

Deterministic Execution In Ethereum, smart contracts must be completely deterministic.
The current blockchain state is computed by applying all recorded transactions in the same
order to the initial blockchain state, typically called the genesis state. Applying a transaction
that involves a smart contract also implies that the smart contract code is executed to
obtain the next blockchain state. Since any full node that joins the Ethereum network must
compute the current blockchain state based on the genesis state, the execution of a smart
contract must be completely deterministic. If, at any point in time, the execution of a
transaction targeting a smart contract leads to a different outcome, the whole protocol breaks
down as this would violate the cryptographic mechanism chaining the blocks based on their
cryptographic hashes. As a consequence, the Ethereum execution environment is carefully
designed to only allow deterministic behavior. Any inputs and outputs are well-defined and
are part of the blockchain state. Furthermore, common features in normal programming
environments are impossible: there can be no source for random number generation and no
machine-specific behavior. For example, IEEE floating point arithmetic is not supported,
as floating point arithmetic can lead to different results depending on the implementation
in the CPU as small rounding errors are allowed. Instead, Ethereum smart contracts use
deterministic fixed-point arithmetic.

Bounding Execution with Gas Since the execution of a smart contract must be replicated
within the whole network, it is essential to limit the execution of smart contracts in time and
space. Otherwise, a simple endless loop of a single smart contract would immediately take
down the whole system. Similarly, since the blockchain is an append-only data structure,
care must be taken not to unnecessarily increase the physical storage space required to
store the blockchain. As such, the size of the smart contract’s state must also be bounded.
Ethereum tackles both problems using the gas mechanism and the derived transaction costs.
Whenever a transaction is committed to the blockchain through mining, the EOA that
originally sent the transaction must pay for the cost of executing the transaction using their
available cryptocurrency. The cost of a transaction is computed using the gas mechanism.
Each operation of a smart contract has an associated gas consumption. The EOA origin of a
transaction then specifies an upper bound for total gas consumption and a gas price in Ether
per gas unit. The balance of the transaction sender is then reduced by the consumed gas
times the gas price and transferred to the miner of the block that contains the transaction.
As such, the increasing cost of the used gas naturally limits the resources used by smart
contracts. However, miners also impose a block gas limit, which limits the number and
execution complexity of transactions per block.

3.2.1 Ethereum Virtual Machine
Ethereum specifies a custom virtual machine and bytecode format: the EVM. The EVM is a
deterministic virtual machine without any source of randomness or behavior specific to the
CPU. Furthermore, the EVM was designed with simplicity in mind. For the consensus layer
it is essential that all nodes, which might run different implementations, can replicate the
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exact same EVM executions. By designing the EVM ISA as simple as possible, it is ensured
that implementations are more likely to be correct.

The EVM is a stack-based architecture: every instruction pops arguments from the stack
and pushes the result back on top of the stack. The default word size for the EVM is
256 bit. As such, all stack operands utilize this bit width. Instructions are encoded as
one-byte opcodes, except for the PUSH family of opcodes, which are used to push constants.
Figure 3.2 shows an example for parts of an execution trace of a EVM smart contracts. It
contains several notable instructions that show certain particularities of the EVM. First,
we have the JUMPDEST pseudo-instruction. While it is technically a no-op instruction, it
is used in the EVM to mark valid jump destinations. The EVM enforces a form of very
coarse-grained control-flow integrity (CFI) [Aba+05], which allows jumps to target only to
program locations that have been previously marked with the JUMPDEST pseudo-instruction.
While not generally considered a security mechanism, this property also prevents code-reuse
attack techniques such as ROP [Sha07; Sze+13]. Second, we have the PUSH2 instruction,
which places a 2-byte constant on top of the stack. This instruction is encoded as 3 byte
in the bytecode format of the EVM. Interestingly, there is another restriction in the EVM
when it comes to jump targets. The EVM forbids jumps into the constants that are encoded
as part of PUSH instructions.

PC Bytecode Instruction Stack (before Instruction) Description

...
...

...

4 5b JUMPDEST
A top

C
. . .

Pseudo-instruction, which has no stack ef-
fects, but is used to mark allowed jump tar-
gets.

5 54 SLOAD
A top

C
. . .

Load a value V from storage address A and
push it to the top of the stack.

6 10 LT
V top

C
. . .

Perform the less-than comparison of the two
top stack value: V < C.

7 61 01 02 PUSH2 0x0102 b = V < C top

. . .

Push the constant 0x0102 to the stack. Note
that the PUSH2 instruction is encoded as a
three bytes: one for the opcode and two for
the constant data.

9 57 JUMPI
0x0102 top

b = V < C
. . .

Perform a conditional jump based on the
boolean b produced by the previous compar-
ison instruction. The jump target is 0x0102
in this case.

...
...

...

Figure 3.2: Example for a part of an EVM execution trace, including the program counter
(PC), the bytecode, the instruction mnemonic, a depiction of the stack, and a
description of the effects of the instruction.

In contrast to many modern computer architectures, the EVM resembles a Harvard
architecture that separates code and data into isolated address spaces. Once the contract is
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created, its code is immutable and cannot be written anymore. The only exception is the
final destruction of a contract, which removes the code of the contract. In fact, the EVM
not only separates code and data, it uses multiple isolated address spaces for different types
of memory for data. The EVM separates its memory into the following memory sections:

• The stack.

• Memory, an area for dynamic memory allocation during execution.

• Storage, for persistent data that is part of the blockchain state.

• The call data, which contains the input attached to a transaction.

• The return data, which contains the data returned by the last call.

• The code, which is read-only but can be accessed to retrieve larger constants such as
fixed strings or constant binary data.

Most of the address spaces are byte-addressable in current versions of Ethereum. Two
notable exceptions are the stack and the storage. The stack is not directly accessible except
but can only be manipulated with instructions pushing and popping and with the DUP and
SWAP opcodes that duplicate and swap 256 bit stack slots relative to the top of the stack.
Addresses in the storage address space point to full 256 bit words, i.e., it can be thought of
as a map data structure that maps 256 bit keys to 256 bit values. In fact, hash maps in the
storage area can be easily implemented in the EVM with the help of the SHA3 opcode and
are commonly used in smart contracts.

Lifecycle of a smart contracts Smart contracts are created by an EOA issuing a transaction
with an empty receiver. This prompts the Ethereum miners to execute a creation transaction
for the smart contract. First, the miner computes the new address of the smart contract and
then executes the constructor bytecode. In Ethereum, the input attached to the creation
transaction is treated as the constructor code. This bytecode is executed once in the EVM
environment to initialize a smart contract. Notably, the constructor execution is performed in
the exact same environment as the regular smart contract execution. As such, the constructor
is allowed to issue further transactions, i.e., to call other smart contracts. However, from the
point of view of all other smart contracts, a smart contract that is currently being constructed
has no code attached. Incidentally, this makes it impossible to reliably distinguish smart
contracts from EOA in nested transactions, which has led to bugs in the past.

Once a smart contract has been created, it is essentially immutable: the code cannot
change anymore. Now anyone participating in the Ethereum network can interact with
the smart contract by issuing transactions, whose receiver field is the address of the smart
contract. As such, Ethereum smart contracts are always available to anyone by design,
including attackers. By default, there is no way to temporarily take down a smart contract
while a patch for a vulnerability is in development. This makes patching highly challenging,
which we will discuss in more detail in Chapter 7.

Finally, the life cycle of a smart contract ends when it is destroyed. While most smart
contracts do not use this feature, it is beneficial to deprecate and destroy old unused smart
contracts because this reduces the size of the current blockchain state at the latest block.
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A contract must voluntarily destroy itself using a special SELFDESTRUCT instruction. This
instruction transfers all remaining Ether associated with the smart contract to a given
address and then deletes the code and data associated with the smart contract.

3.2.2 Programming Paradigms in Ethereum
Ethereum smart contracts are primarily programmed in Solidity [Tea18], a programming
language that features a C-like syntax and the contract-oriented programming paradigm.
Contracts are treated similarly to objects in the common object-oriented programming
paradigm. Contracts have associated methods and variable members and can inherit from
other contracts. While Solidity is the prevalent smart contract language, other languages
like Vyper [Vyp] or Fe [Fou22] have been developed.

However, Solidity has been criticized for its non-intuitive syntax that easily allows intro-
ducing security bugs into the smart contracts [Dai16b; Luu+16]. Major hacking incidents like
the DAO attack [Dai16a] or the Parity Wallet attack [Bre+17; Tec17b] can be traced back
to issues with the Solidity language. Even though the volume of cryptocurrency managed by
Solidity smart contracts is tremendous [Eth22], Solidity has not yet reached a stable release
version of 1.0 [Tea22b]. As such, the language is still undergoing significant changes and has
fixed many of the previous criticisms.

Solidity, and most other smart contract programming languages, expose a set of methods,
which operate on the provided input parameters and the contract’s state. However, on the
EVM level, there is no notion of functions or methods: A smart contract always starts
executing at code address zero. Similarly, the input data attached to the transaction does
not distinguish between parameters. The EVM treats the transaction input data simply
as a sequence of bytes. However, the input to most smart contracts must follow a certain
structure, which is decoded by the smart contract itself. Solidity has defined a custom ABI
for source languages targeting the EVM [Tea22a]. This ABI specifies how the transaction
input must be formatted when a certain function should be called. More specifically, the first
four bytes of the EVM input contain a function selector. In Solidity, this function selector is
computed as a hash over the type signature of the method. The Solidity compiler emits a
dispatcher at the start of the smart contract, which jumps to the right function based on
the function selector in the input. A programmer can also specify a fallback function that is
called when no, or no known, function selector is provided.

One important feature of Solidity smart contracts is the possibility to interact with other
smart contracts. In fact, smart contracts have multiple different ways to interact with
each other. On the EVM level, there are multiple instructions that are used to issue calls
between smart contracts. Most importantly, the normal CALL instruction issues a new
internal transaction that is used to a) transfer Ether to EOA and other smart contracts, and
b) call public methods of other smart contracts. However, there are also multiple other types
of calls. The DELEGATECALL instruction1 is used to call other smart contracts as libraries,
i.e., the library smart contract is executed with the state of caller smart contract. The
STATICCALL is like the normal call instruction but prevents the callee from performing state
updates. This is useful when the intention is only to retrieve data from the other smart

1and the similar but deprecated CALLCODE
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contract, e.g., a getter method. Furthermore, smart contracts can utilize the CREATE family
of instructions to deploy new smart contracts.

Somewhat confusingly, on the EVM level, all the call instructions are concerned with
performing external calls, i.e., calls targeting other smart contracts. Even though high-level
languages like Solidity fully support this, there is no instruction to perform internal function
calls within a smart contract’s code like in traditional ISAs. While there are proposals to
add such instructions [Bro22], they are not yet in widespread use at the time of writing. As
a result, many compilers emulate internal calls by pushing a return address to the stack and
returning by using the normal JUMP instruction. Note that this causes significant problems
when statically analyzing EVM bytecode. Since a normal jump cannot be distinguished from
a return, it is highly challenging to build an accurate control-flow graph (CFG) for even
moderately complex EVM bytecode. Several research projects have attempted to tackle this
issue using various static analysis methods [Alb+18; Bre+18; Con+21; Gre+19].
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1 function batchTransfer(address[] _receivers, uint256 _value)
2 public whenNotPaused returns (bool)
3 {
4 uint cnt = _receivers.length;
5 // OVERFLOW: 2 * ((INT_MAX / 2) + 1) == 0
6 uint256 amount = uint256(cnt) * _value;
7 require(cnt > 0 && cnt <= 20);
8 // BYPASSED CHECK: balances[msg.sender] >= 0
9 require(_value > 0 && balances[msg.sender] >= amount);

10 /* .... */
11 // RESULT: Transfer of ((INT_MAX / 2) + 1) tokens

Figure 3.3: Integer overflow bug reported by PeckShield [Peca].

3.2.3 Smart Contract Vulnerabilities
Over the history of the Ethereum blockchain platform, there have been various incidents
due to vulnerabilities in smart contracts [ABC17; Luu+16; SWC]. The attacks range from
denial-of-service (e.g., the King of the Ether Throne bug [KotET]), unavailable Ether (e.g.,
the Parity multisig wallet [Tec17a]), to attackers being able to steal Ether (e.g., the DAO
attack [Jen16]). There are numerous potential pitfalls and various types of bugs in Ethereum
and Solidity. In the remainder of this section, we will discuss the most important bug classes,
which are tackled in the following chapters of this dissertation.

Integer Bugs Due to performance reasons and engineering constraints, typical CPU ISAs
utilize fixed bit-width integers. In this respect, the EVM architecture is no different, even
though the EVM uses an unusually large bit-width of 256 bit. Essentially, this means that
the mathematical integer is only approximated by computers. This can lead to bugs at the
boundaries of the capabilities of fixed bit-width integers. When considering smart contracts,
which generally need to track cryptocurrency or token balances, integer bugs can become
quite critical vulnerabilities. For example, there have been multiple reports on integer-related
bugs in token contracts [FSS18; Peca].

In the Ethereum ecosystem, token contracts implement specialized sub-currencies. Users
can utilize exchanges to convert Ether, the native currency, into tokens. Once the user
possesses tokens, they can transfer them by calling the respective method of the token
smart contract. Figure 3.3 shows an example of an integer overflow vulnerability in a token
contract. The token features a batchTransfer function, which allows transferring a certain
number of tokens to multiple other accounts at once. However, there is an integer overflow
bug, which the attacker can exploit to overcome a balance check. More specifically, the
attacker can choose the parameters to the vulnerable function, such that the total amount
of needed tokens—stored as amount in Figure 3.3—becomes 0. As a result, the attacker can
trick the contract into transferring a large number of tokens without owning a single token.

Besides, integer overflows Ferreira-Torres et al. [FSS18] identify three major types of
integer bugs that are also applicable to smart contracts:
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Arithmetic Bugs include integer over- and underflows, i.e., the fixed bit-width integer causes
a wrap-around because the result of an arithmetic computation would exceed the
capability of the fixed-width integer type.

Truncation Bugs happen when converting between a larger integer type to a smaller one,
discarding critical information in the process. For example, if a 256 bit integer larger
than 255 is converted to an 8 bit integer, the upper bits must be discarded.

Signedness Bugs happen if an unsigned integer type is converted to a signed integer type
or the other way around. On the EVM level, signed integers are represented using the
common two’s complement approach. As a result, converting a small signed integer
will result in a very large unsigned integer.

Access Control Bugs To maintain a smart contract, many developers introduce the Owned
contract pattern. Here the contract maintains an address of a special owner account. Access
to specially privileged functions is then restricted to originate from the owner. However,
there is no architectural support or support from the language. As such, any access control
must be implemented manually by the developer. Especially in early smart contracts, this
often caused bugs if the access control checks were only partially applied or became ineffective
due to unrelated changes to the smart contracts. This type of bug belongs to one of the
most well-studied bug classes in the smart contract literature [FAH20; KR18a; Luu+16;
Nik+18; SHO21]. These studies identified many vulnerable contracts that were deployed to
the blockchain.

This type of vulnerability received special attention after the infamous parity wallet
incident, where many funds were vulnerable and finally frozen due to bugs in the code and
issues during deployment. Figure 3.4 shows an example of an access control bug. Here the
Wallet smart contract utilizes a library smart contract that introduces a set of owners with
special permissions. The library contract exposes the initWallet function to initialize the
owners array, which allows lazy initialization of the contract. Normally, this function is
supposed to be called once in the constructor of the contract that uses the library. However,
this initialization function is not properly protected by access control checks. As such,
anybody can call the initWallet function even after the first initialization. This allows any
participant of the Ethereum network to overtake the Wallet contract by calling the initWallet
with a custom set of owners.

Reentrancy Vulnerabilities Reentrancy vulnerabilities have been the root cause for sev-
eral high-profile attacks on the Ethereum blockchain. The most infamous TheDAO inci-
dent [Dai16a], the SpankChain incident [Spa18], and the more recent Uniswap and Lendf.Me
incidents [Tor+21b]. In Ethereum, a reentrancy bug is a deterministic form of a common
concurrency problem where a contract calls another contract which calls back into the calling
contract. However, if the contract is not safe to be re-entered, then reentrant calls operate
on potentially invalid internal state of the smart contract, i.e., state is only partially updated
by the previous invocation. Such inconsistent state can then be exploited by an attacker to
bypass critical checks.

However, reentrancy is also often occurring during normal contract execution. For example,
it is part of common and officially supported programming patterns for Ethereum smart
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1 contract WalletLibrary {
2 address[16] owners;
3 mapping(bytes => uint256) approvals;
4

5 function confirm(bytes32 _op) internal returns(bool) {
6 /* logic for confirmation */
7 }
8 function initWallet(address[] memory _owners) public {
9 /* initialize the Wallet functionality */

10 }
11 function pay(address payable to, uint amount) public {
12 if (confirm(keccak256(msg.data))) {
13 to.transfer(amount);
14 }
15 }
16 // ...
17 }
18 contract Wallet {
19 // the Wallet contract utilizes the WalletLibrary contract
20 // deployed at a fixed address:
21 address walletLibrary = address(0x1234ABCDFEFEFE);
22 constructor(address[] memory _owners) {
23 // initialize the Wallet functionality
24 bytes memory data = abi.encodeWithSignature("initWallet(address[])", _owners);
25 walletLibrary.delegatecall(data);
26 // ...
27 }
28 // forward all unknown calls to the WalletLibrary
29 fallback() external payable {
30 walletLibrary.delegatecall(msg.data);
31 }
32 }

Figure 3.4: A simplified variant of an access control issue similar to the bug of the parity
multisig wallet.

contracts [SolWd]. The common withdrawal code pattern [SolWd] is shown in Figure 3.5
Here contract A withdraws 100 wei from contract B. In Figure 3.5, contract A calls the
public withdraw function of contract B. During this call B then invokes the built-in call
method on the sender (msg.sender in Solidity). This then transfers the specified amount to
A (i.e., msg.sender is representing the calling contract A). In Ethereum, Ether is transferred
by means of a call, e.g., contract B must call back (re-enter) into contract A’s fallback or
receive function to send the funds.

There are several ways to call other smart contracts in Solidity. First, there are the
low-level call mechanisms, like send, call, and transfer, which are part of the address type in
Solidity. Generally, the send and transfer functions are considered reentrancy safe, as they
only provide a limited amount of gas to the called contract, effectively preventing the callee
contract from performing further calls. However, when an address is cast to a smart contract
(or its interface), then the smart contract is usually called via the regular call mechanism that
is not reentrancy safe. The exception is when a method is called that is annotated as pure or
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1 contract A {
2 B b;
3 function f() public {
4 b.withdraw(100);
5 }
6 fallback() external payable { }
7 // ..
8 }
9

10 contract B {
11 function withdraw(uint amount) public {
12 msg.sender.call{value: amount}("");
13 }
14 }

A.f()

B.withdraw()

A.()

CALL

CALL

transfers amount Ether from B to A

Figure 3.5: Common withdrawal pattern in Solidity: the upper part shows the sample Solidity
code, whereas the lower part shows the call chain. In this example contract A
withdraws 100 wei from contract B.

view in Solidity. These types of methods are called using the STATICCALL instruction, which
prevents state updates and further external calls. As such, these calls can be considered
reentrancy safe.

A malicious reentrancy occurs when a contract is reentered unexpectedly and the contract
operates on inconsistent internal state, i.e., the contract accesses persistent data in the
storage area that is not consistent with a concurrent execution of the smart contract. More
specifically, we define a reentrancy bug to occur when the following conditions are met:

1. The contract is called at call depth C1 and is reentered at call depth C2, where C1 < C2.

2. The contract loads a value V from storage address AS .

3. The contract writes a value V ′ with V ′ ̸= V to storage address AS after the reentrant
execution at C2 returned.

4. There is data-dependency on V from a control-flow instruction, a storage write, a
RETURN instruction, or one of the parameters to one of the call instructions, and one of
these instructions is executed in the reentrant call at depth C2.

This implies that the reentered victim contract operated based on an inconsistent state value,
and thus the reentrancy was not expected by the contract developer.
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1 function withdraw(uint amount) public {
2 ➀ if (credit[msg.sender] >= amount) {
3 ➁ msg.sender.call.value(amount)();
4 ➂ credit[msg.sender] -= amount;
5 }
6 }

Victim Attacker Victim Attacker State

1 c = N, a = N

2 a ≤ c X

A

1 a ≤ c X

2

A

3 c′ = c − a = 0

A

3 c′′ = c′ − a = −N ×

re-enter

transfer Ξ

transfer Ξ

state update

state update

Figure 3.6: Sample contract vulnerable to re-entrancy attacks: the upper parts shows the
Solidity code, whereas the lower part shows the call sequence between the
vulnerable contract Victim and the attacker contract, and the state of the
variable a (amount) and c (credit[msg.sender]). The amount a has not been
updated for the second invocation of Victim thereby allowing a malicious re-
entrancy.

From this definition, one can deduce a rather simple policy to prevent reentrancy issues:
disallowing state updateds after calls. Here, it is forbidden to write to storage addresses after
an external call happens, i.e., after potential reentrant executions. By design, this ensures
that a reentrant execution always operates on the latest state of the contract. While this
policy is implemented by several static and symbolic analysis tools, such as Slither [FGG19],
Securify [Tsa+18] or Mythril [Conc], this policy is also overly restrictive and suffer from
a significant number of false alarms (see Section 6.5). In many cases, it is not possible to
remove the state update after the call. For example, whenever a state update depends on
the return value of an external call, this policy cannot be enforced.

Figure 3.6 shows a simplified version of a contract (inspired by Atzei et al. [ABC17]),
called Victim, which suffers from a reentrancy vulnerability. Victim keeps track of an amount
(a) and features the withdraw function allowing other contracts to withdraw Ether (c). The
withdraw function must perform three steps: ➀ check whether the calling contract is allowed
to withdraw the requested amount of Ether, e.g., checking whether a ≤ c, ➁ send the
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amount of Ether to the calling contract and ➂ update the internal state to reflect the
new amount, e.g., c− a. Note that step ➁ is performed before the state is updated in ➂ .
Hence, a malicious contract can re-enter the contract and call withdraw based on the same
conditions and amounts as for the first invocation. As such, an attacker can repeatedly
reenter into Victim to transfer large amounts of Ether until the Victim is drained of Ether.
A secure version of our simple example requires swapping lines 3 and 4 to ensure that the
second invocation of Victim operates on a consistent state with updated amounts.

3.2.4 Identifying Basic Blocks in EVM Bytecode
A typical Ethereum client must be able to quickly load and execute many different smart
contracts. As such, the overhead of loading a smart contract must be small. At the same
time, the execution speed of the smart contract should be minimal. As such, the EVM
bytecode exhibits several properties that make it amendable for quick analysis. For example,
while it is notoriously difficult to properly build a CFG from EVM bytecode [Alb+18], it is
possible to identify basic block boundaries using a single linear pass. This eases building
faster interpreters or helps to reduce the latency of just-in-time compilers. In Algorithm 1,
we describe the algorithm to identify all basic blocks, all legitimate jump targets, and all
data constants within EVM bytecode.

Algorithm 1 Identify all basic blocks in EVM bytecode.
Input: EVM Bytecode of length N
Output: BB, J, D

1: BB ← ∅ ▷ Set of basic blocks (pcstart, pcend)
2: D ← ∅ ▷ Data constants ranges (pcstart, pcend)
3: J ← ∅ ▷ Allowed jump destinations, set of pc offsets
4: pc← 0 ▷ Current offset into the bytecode
5: pc′ ← pc ▷ Start of current basic block
6: while pc < N do
7: if get_op(pc) = JUMPDEST then
8: J ← J ∪ {pc}
9: BB ← BB ∪ {(pc′, pc− 1)}

10: pc′ ← pc
11: else if get_op(pc) ∈ { JUMP, JUMPI } then
12: BB ← BB ∪ {(pc′, pc)}
13: pc′ ← pc + 1
14: else if get_op(pc) ∈ {PUSH1, . . . , PUSH32} then
15: s← get_push_size(pc)
16: if pc + 1 < N then
17: D ← D ∪ {(pc + 1, pc + 1 + s)}
18: pc← pc + s ▷ Skip constant data when scanning instructions
19: pc← pc + 1

The EVM bytecode format is quite simple, as every opcode is simply a single-byte identifier.
Since everything is stack-based, there is no encoding of register identifiers or similar metadata
into the opcode itself. However, there is one exception: EVM implementations prevent jumps
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into the data constants that are embedded into PUSH instructions. Here the EVM enforces
a slight separation of code and data in the code address space. The constant operands of
the push instructions follow directly after the byte of the push instruction opcode. Such a
constant operand could include the byte for the JUMPDEST instruction. Then, the constant
would be a legitimate jump target. As a consequence, a new unintended instruction sequence
would occur. Since such unintended instruction sequences can have a negative impact on
security, as on other native CPU architectures [Sha07], the EVM attempts to avoid them.
To avoid such unintended instruction sequences, EVM implementations must perform a
linear sweep as shown in Algorithm 1 over the code section to find all push instructions. The
constants that are part of those push instructions are then marked as data. They become
invalid jump targets, even if they contain a byte equivalent to the JUMPDEST instruction.

However, push constants are not the only data inside the code address space. Many smart
contracts also embed constant strings or the constructor code of other sub-contracts into
their code segment. Both must be considered as data in the context of the current contract
bytecode. However, there is no explicit marker for distinguishing such things as data within
the code address space. Furthermore, due to performance reasons, EVM implementations
ignore control-flow information when marking data, i.e., they rely on a single linear sweep
as shown in Algorithm 1. As such, the push instructions opcode byte itself can be part of
some data constant, such as a string or other binary data, marking the following bytes in
the bytecode as invalid jump destinations. For this reason, current smart contract compilers
accumulate all data constants at addresses strictly larger than any reachable code, avoiding
any conflicts between the generated code and data encoded into the code address space.
This also means that any analysis that uses Algorithm 1 must be aware that the set of basic
blocks will contain invalid, incomplete, and generally garbage basic blocks at the end of the
contract bytecode and must handle this accordingly.
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3.3 Comparison of Secure Execution Environments
In this chapter, we discuss two new execution environments for software: SGX in Section 3.1
and Ethereum in Section 3.2. Both execution environments promise a form of secure execution
to the developer. We give an overview of their features in Table 3.1. While both execution
environments feature quite distinct features, they do essentially offer the same programming
model for software inside of the secure execution environment: a library-like API. A user,
or client, of a trusted SGX enclave or Ethereum smart contract interacts with the trusted
software using an API. On the logical level, this API features several function definitions
along with their parameters. However, in terms of delivery, both environments are quite
different. A function call in Ethereum entails creating, cryptographically signing, and finally
broadcasting a transaction to the Ethereum peer-to-peer network. After the mining process
is finished, the execution is done and can be inspected. In contrast, SGX enclaves are loaded
as part of a local environment, a normal user space process. This user space process then
utilizes the SGX hardware extensions to jump into the native enclave code.

The nature of the open and permission-less Ethereum blockchain leads to one significant
drawback: there is no confidentiality. In order for the blockchain protocol to operate correctly,
any smart contract code and state must be public. In contrast, SGX is designed to allow for
confidential computing, i.e., nobody should be able to observe an enclave’s internal state or
data. However, code and data integrity is required to achieve confidentiality, or otherwise,
an active attacker can subvert the enclave’s code or inject faults to divert the enclave’s
execution flow.

Table 3.1: Comparison of Secure Execution Environments

Ethereum SGX
Code Integrity Yes Yes
Code Confidentiality No Partial
Data Integrity Yes Yes
Data Confidentiality No Yes
Trusted Third Party No Yes (Intel)
Enforcement Consensus Hardware
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In this chapter, we discuss analyzing SGX enclave code using symbolic execution. To
investigate the prevalence of memory corruption in SGX enclaves, we developed the symbolic
executor TeeRex (Section 4.1), which is capable of identifying exploitable memory errors
in SGX enclaves. We show how to apply TeeRex to real enclaves, identifying multiple
vulnerabilities. Furthermore, we perform root-cause analysis on the discovered vulnerabilities
and summarize common vulnerability patterns in enclave code.

The design of SGX links enclaves to a corresponding untrusted host application (see
Section 3.1 for background on SGX). More specifically, the enclaves in the programming
model of the Intel SGX SDK can be used like a shared library. The Intel SGX SDK offers a
C-function-like interface allowing bidirectional communication between the host application
and the enclave. Effectively, SGX introduces two privilege levels into the regular address
space of a program: the privileged enclave and the unprivileged host application. When
software is partitioned into privilege levels, it is essential to secure the interface between
privilege levels [CS13; Hu+15]. More specifically, the interface between enclave and host
must employ careful validation of data that is passed over the privilege boundary. To avoid
becoming a victim of a privilege escalation attack, the enclave must take special care to
validate any input, particularly when the input contains code or data pointers.

As most C/C++ software, SGX enclaves are also prone to memory errors, which are the
result of programming mistakes (as described in Section 2.1.1). However, in the context of
the SGX technology, they are especially critical, as they allow an attacker to subvert all
security guarantees provided by the hardware. For example, memory errors such as buffer
overflows often allow an attacker to perform code-reuse attacks such as ROP [Sha07], or
data-only attacks such as information leaks or data-oriented programming (DOP) [Hu+16].

Prior work has already analyzed exploit techniques for memory errors in the context of
SGX enclaves. Lee et al. [Lee+17] presented DarkROP, a code-reuse attack technique, which
shows that the enclave code must not be known to an attacker to successfully launch ROP
attacks against the enclave. Biondo et al. [Bio+18] describes a powerful exploit technique
that allows the attacker to launch a code-reuse attack that abuses the particularities of the
Intel SGX SDK. Furthermore, the code-reuse attack by Biondo et al. [Bio+18] bypasses
existing randomization-based defenses such as SGX-Shield [Seo+17].
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None of the prior works on SGX attacks has attempted to identify vulnerabilities in
enclave code. All prior work assumed the presence of a memory error that can be abused
by the attacker as a powerful memory corruption exploit primitive. Using our automated
symbolic executor TeeRex, we shed some light on the prevalence of memory errors in
enclave code. We gathered a set of seven enclaves, including open-source Linux enclaves and
proprietary Windows enclaves. We find that in this set of seven enclaves, six contain critical
vulnerabilities. Several of the enclaves, which we analyzed, are legacy code bases that have
been ported to SGX enclaves. However, the software has not been updated to handle the
particularities of the SGX environment. We conclude that due to memory errors and a lack
of parameter validation on the host-enclave boundary, many SGX enclaves are vulnerable to
privilege escalation attacks, such as leaks of enclave memory or even arbitrary code execution
inside the enclave. To improve the security of SGX enclave code we 1) summarize common
pitfalls of SGX code as vulnerability patterns (Section 4.2) and 2) present our analysis tool
TeeRex to automatically vet enclave code for vulnerabilities (Section 4.1).

Contributions To summarize, the contributions of the work presented in this chapter are:

• We show how to adapt symbolic execution to SGX enclaves and exploit the parallelism
inherent to the structure of the SGX APIs to speed up symbolic execution.

• We show how to detect memory corruption attacks in SGX enclaves using our adapted
symbolic execution engine.

• We perform an in-depth analysis of several real-world enclaves using TeeRex. We
discover critical vulnerabilities in all but one of the analyzed enclaves. We verify the
vulnerabilities by constructing proof-of-concept (PoC) exploits based on the output of
TeeRex.

• We present several vulnerability patterns that are specific to the SGX technology but
common to many of the enclaves we analyzed. Along with the vulnerability patterns,
we present guidelines to avoid said vulnerabilities.

This chapter is based on the following publication:
“TeeRex: Discovery and Exploitation of Memory Corruption Vulnerabilities in SGX Enclaves”.
29th USENIX Security Symposium, 2020. Tobias Cloosters, Michael Rodler, and
Lucas Davi
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4.1 The Symbolic Enclave Executor TeeRex
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Figure 4.1: Architecture of TeeRex [CRD20]

To analyze SGX enclave code, we developed a symbolic execution tool. We call our symbolic
executor TeeRex, an abbreviation of Trusted Enclave Ecall Runtime EXploiter. We use
this symbolic execution framework to implement vulnerability detectors that automatically
identify security-critical bugs in SGX enclave code. TeeRex generates a detailed vulnerability
report, which allows a security analyst to quickly develop a proof-of-concept exploit that
demonstrates the vulnerability. To facilitate proof-of-concept exploit development, TeeRex
also discovers useful exploit primitives, i.e., code paths that are useful for constructing
exploits.

TeeRex is built using the well-known Angr binary analysis toolkit [Sho+16]. By building
upon Angr, we can easily support the major platforms that are also supported by SGX
(more specifically the Intel SGX SDK): Windows (PE) and Linux (ELF) binaries and both
32 and 64-bit enclaves. In contrast to other symbolic executors, such as KLEE [CDE08], we
apply symbolic execution to the binary level. This has several advantages: First, this allows
TeeRex to analyze closed-source, proprietary enclaves where no source code is available.
Second, the vulnerabilities we want to discover often depend on the low-level details of
the executed enclave code. As such, binary-level symbolic execution is a natural choice.
However, since we need to model several low-level execution details in TeeRex, we currently
only support enclaves that utilize the official Intel SGX SDK. There are multiple other
enclave frameworks that offer different programming models and ABIs that are currently
not supported, e.g., the Graphene framework [TPV17] or Google’s Asylo [Asy]. In principle,
our approach can be adapted to such alternative frameworks, which we leave as future work.

Some frameworks, including the Intel SGX SDK, include support for dynamically loading
and decrypting code into a running enclave. Fundamentally, any binary analysis technique
must have access to the complete binary code to perform analysis. As such, TeeRex also
supports only unencrypted enclave code.

In the remainder of this section, we describe the architecture of TeeRex (Section 4.1.1),
several implementation challenges (Section 4.1.2), and finally, the details on the vulnerability
detection components (Section 4.1.3).
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4.1.1 Architecture
Applying symbolic execution to real-world software systems faces several challenges, including
state explosion and interactions with other components. For example, dealing with side
effects caused by the OS is highly challenging. Continuing symbolic execution into the OS
kernel is possible [CKC11], but can easily lead to state explosion [Bal+18]. Realistically, to
support symbolic system calls, a symbolic execution engine must simulate the system calls
and manage a simulated file system [Bal+18]. Fortunately, many properties of SGX enclaves
make it easier to perform symbolic execution for SGX enclaves: enclave code is completely
self-contained, and the enclave is isolated from the rest of the system. In particular, SGX
enclaves do not utilize dynamic libraries and cannot perform any system calls. Consequently,
any interaction with the OS must be routed through the untrusted counterpart to the enclave.
This is achieved by using the OCALL mechanism to the untrusted host application.

Figure 4.1 shows the architecture of our symbolic analysis in TeeRex. With TeeRex, we
identify vulnerable program states while symbolically executing the enclave code. TeeRex
also gathers meta-data along the way to generate a detailed vulnerability report. TeeRex
symbolically executes each ECALL of the enclave and checks every resulting state for
various vulnerability types. TeeRex contains a pointer tracking component used during
vulnerability report generation. The pointer tracking component tracks pointer dereferences
and propagates labels that allow TeeRex to distinguish data that originates from host and
enclave memory. This is required because TeeRex needs to identify vulnerable code paths
that load data from outside the protected enclave memory, i.e., untrusted host memory.
Every load from untrusted host memory introduces a fresh symbolic value, allowing TeeRex
to model arbitrary, and potentially malicious, host applications.

TeeRex is implemented based on the well-known Angr binary analysis framework [Sho+16]
and utilizes the symbolic execution engines of the Angr framework. However, Angr itself
does not fully support executing SGX enclaves out of the box since it does not model the
division of the address space into a trusted and untrusted part. More specifically, (1) Angr
cannot jump from the host application to the enclave (2) the initial environment to directly
execute ECALLs requires special state setup, (3) some of the CPU instructions used by
enclaves are not supported by Angr out-of-the-box, (4) Angr is limited to one thread
and CPU core, while TeeRex is able to leverage enclave specifics (i.e., multiple ECALLs)
to perform multi-core analysis, and (5) the functions that implement the trusted memory
allocator are not directly supported by Angr. Furthermore, we extend Angr by adding
vulnerability analysis components specific to SGX enclaves. Note that Angr does not
perform any vulnerability analysis by default. It provides a robust framework to perform
analysis and symbolic execution of binary code. We show how to tackle these challenges in
TeeRex in Section 4.1.2.

TeeRex consists of several major components, as shown in Figure 4.1: the preprocessor,
enclave loader, symbolic explorer, vulnerability detection, and pointer tracking component.

Preprocessor First, TeeRex performs a pre-processing step on the enclave binary to
(1) identify instructions and functions that are not supported by the base symbolic executor
Angr, and (2) to identify the ECALL table and extract its contents: the addresses of the
ECALL functions. This first static analysis step is required to increase the performance and
coverage of the analysis. Identifying the various ECALLs allows us to skip executing the
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initialization routines of the Intel SGX SDK. Furthermore, this also allows for parallelization,
as different ECALLs can be analyzed in parallel.

Enclave Loader Before starting symbolic execution, we must first load the enclave code
and set up an initial state inside of the symbolic execution engine. The enclave loader
loads the enclave code and then selects one of the ECALLs and sets up the corresponding
initial environment. Furthermore, it places hooks on several common functions and special
instructions, which the preprocessor identified, such that these are emulated using Python
code. Finally, it also creates the argument structure for the ECALL, which contains
unconstrained and traceable symbolic values.

Symbolic Explorer The symbolic explorer is the component that performs symbolic ex-
ecution utilizing the Angr framework. However, in contrast to plain symbolic execution,
the ECALL centric exploration of TeeRex can be distributed across multiple cores and
machines. The symbolic explorer analyzes each of the ECALLs individually. The results
of all explorations are merged in the final vulnerability report, which is consumed by the
analyst.

Vulnerability Detection During symbolic exploration, TeeRex’ vulnerability detection
components analyze the encountered program states. More specifically, the vulnerability
detection components analyze all memory accesses (loads and stores) and all jumps. We
describe the vulnerability detection components in greater detail in Section 4.1.3.

Pointer Tracking With TeeRex, we attempt to detect vulnerabilities at the interface
boundary, which are caused by insecure pointer usage and lack of pointer validation. As
such, we need to precisely model and track pointers during symbolic execution. To achieve
this, we utilize a pointer tracking component that is hooked into the symbolic execution
engine. We analyze all pointer dereferences and propagate labels between symbolic values.
This is a taint-style analysis, where each value that is loaded from memory is also annotated
with its address. In terms of taint analysis, the taint tag is equal to the concrete address
where the value was loaded. We then propagate this during symbolic execution in TeeRex,
such that when the memory-loaded value is used, we can determine the address where the
value originated. With this information, we can track back the logical origin of the value.
For example, when a function pointer is used as part of an indirect call, we can trace back
whether the value was originally loaded from enclave memory, host memory, or whether it
was passed as an argument to the ECALL function.

To further refine this distinction between trusted and untrusted memory, we place hooks
on certain Intel SGX SDK functions that validate addresses. For example, there are functions
that validate whether an address is within or outside of enclave memory, respectively. When
the enclave code utilizes such a function, TeeRex introduces two distinct follow-up states
in the symbolic execution: one for within and one for outside enclave memory. When the
enclave properly validates the pointer, then one of the two states will quickly lead to an error
state, which is not further explored. This information gained by hooking these functions
from the Intel SGX SDK is also used by TeeRex to check whether a bug is likely exploitable,
which allows TeeRex to refine the vulnerability report’s accuracy.
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Vulnerability Report The final component of the analysis pipeline is the vulnerability
reporting component. TeeRex produces a vulnerability report, which contains all findings
ranked according to potential severity. For every finding, the report contains (1) the type
of vulnerability, (2) the location in the binary (i.e., code address), (3) which pointer is
controllable and the source of the controllable pointer, (4) and an execution trace that shows
how vulnerable instruction can be reached. Based on this vulnerability report, an analyst
can determine the severity of the findings, e.g., by constructing a proof-of-concept exploit.

4.1.2 Implementation Challenges
In the following, we will discuss the challenges of applying symbolic execution to SGX
enclaves binaries and how we tackled these challenges with TeeRex.

Bypassing Initialization Code For enclaves built with the Intel SGX SDK, there is typically
only one or only a few entry points into the enclave. For a typical ECALL, the enclave first
executes setup routines from the TRTS, unpacks the parameters, and finally jumps to the
ECALL handler in the enclave code (see Section 3.1 for more details). The setup routines
in the TRTS are heavily dependent on the intrinsics and calling conventions of the SGX
instructions and the enclave’s internal metadata, which are not present in our emulated
environment. This introduces a major challenge for a symbolic execution engine. First, the
initialization routines contain many memory accesses through symbolic addresses, which
is a notoriously hard problem for symbolic execution engines in general [Bal+18; Cha+12].
Second, due to the low-level nature of the TRTS code, the symbolic execution loses semantic
information about the execution context when it finally reaches the ECALL handler. Due to
this loss of semantic information, it is not easily possible to map symbolic memory ranges to
ECALL parameters once the symbolic execution reaches the ECALL handler.

We are mostly interested in analyzing the ECALL handler code provided by the enclave
developer. Everything between the enclave entry and the ECALL handler is code provided
by the Intel SGX SDK. This code is unlikely to contain critical bugs, so we skip SDK code
analysis. We designed TeeRex to skip the symbolic execution of the TRTS initialization and
instead directly target developer-provided ECALL handler functions. In the pre-processing
step, TeeRex first locates and extracts the ECALL table from the enclave binary, which
maps an ECALL identifier to the ECALL handler function. TeeRex then starts symbolic
execution at the beginning of every ECALL handler separately.

This design has several advantages: first, it allows TeeRex to produce very accurate
vulnerability reports as it is now possible to map data that is used by the ECALL handler to
arguments passed to the ECALL function. Second, it simply skips executing code that is not
relevant for identifying vulnerabilities in enclave code, i.e., the TRTS code. Finally, it allows
for a certain degree of parallelization because we can start the analysis for each ECALL
function separately. This also allows us to deal with restrictions of the Angr framework,
which is restricted to one thread due to the limitations of the Python implementation.
Standard Memory Functions Symbolically executing the binary code of standard helper
functions such as memcpy or malloc quickly leads to unnecessarily complex symbolic program
states and path constraints. This is because the symbolic execution engine must analyze
all of the—surprisingly complex—internals of these functions. To avoid this unnecessary
overhead, many symbolic execution engines hook such functions and implement symbolic
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summaries. The Angr framework employs so-called SimProcedures to implement such
common functionality directly in the symbolic execution engine. For example, Angr hooks
into the execution of malloc, and instead of symbolically executing the function in the binary
or standard library, the SimProcedure is called. In Angr, the SimProcedure is typically
implemented in python and updates the symbolic state in a similar way to the hooked function.
However, in contrast to the original function, the SimProcedure has significantly reduced
potential for state explosion. Typically, such helper functions are located in dynamically
loaded system libraries such as the standard library for C (libc). These are easy to intercept,
as they are identified by their name (e.g., the symbol in Executable and Linkable Format
(ELF) binaries). In contrast to regular applications, SGX enclaves are always statically
linked. Therefore, they ship with their own versions of these helper functions. It is not easily
possible to identify the right place hooks, as no symbols are available. As such, TeeRex
employs heuristics to search the enclave binary file for the statically linked versions of helper
functions and places hooks to invoke the corresponding SimProcedure instead. Here we
exploit the fact that most enclaves utilize the functions that are provided by the Intel SGX
SDK.
Unsupported CPU Instructions SGX is a relatively new CPU extension, and it depends
on several other newer extensions to the x86 ISA. Unfortunately, several newer instructions
are not supported by the version of the Angr framework on which TeeRex is based. As
such, we need to work around this issue by placing hooks, similar to SimProcedures, on the
unsupported instructions. We place hooks on the primary SGX instruction enclu, which is
used to enter and exit an enclave. Additionally, we place hooks on the instructions rdrand,
which is used in the enclave to generate cryptographically secure random numbers, and
xsave/xrstor, which are used during OCALLs for saving and restoring the register state
to/from memory when the execution passes the host-enclave boundary. Since we directly
start symbolic execution within the ECALL, we do not need to support enclave entry. We
stop analysis when we encounter an instruction to perform an enclave exit. For the other
unsupported instructions, we simply implement their effects on the symbolic program state
in the corresponding Python hook.

Global State of Enclaves and Chains of ECALLs A typical SGX enclave developed with
the Intel SGX SDK can have multiple entry points. An attacker, i.e., the untrusted host
application, can exercise the different ECALLs with different attacker-controlled input data
in different orderings, with each call affecting the internal global state of the enclave (enclave
heap, global variables, etc.). This is a typical API testing problem. As we discussed earlier
in Section 2.2, exhaustive exploration of APIs using symbolic execution is often not feasible.
Alternatively, an accurate symbolic exploration of an ECALL requires exhaustive knowledge
about the effects of all ECALLs. However, obtaining the effects of an ECALL requires first
knowing about the effects of other ECALLs. Typically such problems in program analysis
are solved using fixed-point algorithms.

Instead of using a fixed-point iteration approach, we implemented TeeRex such that
we sacrifice completeness and soundness for increased analysis performance. TeeRex
analyzes each ECALL individually and treats all global state of an enclave as initialized
with unconstrained symbolic values. This includes all global variables in the data and bss
sections. Essentially, we treat the enclave’s initial state similar to attacker input. While this
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makes TeeRex explore paths of an ECALL that are not reachable with an enclave’s initial
global state, it also produces false alarms. The reason for the increased number of false
alarms is that an unconstrained global state is an over-approximation of the initial enclave’s
global state. The global state is typically not fully attacker-controlled, like ECALL inputs,
but rather initialized to zero or set to some specific value by a different ECALL, according
to the implemented enclave logic.

For example, consider an enclave that utilizes a function pointer stored in the global
state. TeeRex assumes that this function pointer is unconstrained: allowing the enclave
to jump anywhere. However, in reality, the jump may only target a certain small set of
function pointers that are set by other ECALLs. Since TeeRex does not detect this implicit
relationship, it will identify a jump that is controlled by the attacker. Nevertheless, the
analysis results are still useful because they can lift limited exploitation primitives (e.g.,
null-pointer dereference or write to an arbitrary address with a fixed value) to full control-flow
hijacking attacks. To increase usability, we introduce a classification of findings into auxiliary
primitives and exploit primitives, where the former are not exploitable by themselves but
are useful in constructing proof-of-concept exploits.

4.1.3 Vulnerability Detection Components
We implemented three major vulnerability detection components in TeeRex: (1) attacker-
controlled branches (control-flow hijacking), (2) controlled writes, and (3) NULL-pointer
dereferences.

Control-Flow Hijacking In TeeRex, we define control-flow hijacking as a program path
where the symbolic execution engine encounters an unconstrained jump target. During
regular executions, jump targets are always constrained to a very limited set of legitimate
targets. However, suppose an untrusted attack-controlled pointer is used to determine a
jump target. In that case, the jump target becomes unconstrained, as attacker-controlled
input is set to unconstrained values in TeeRex.

TeeRex’s symbolic execution engine sets anything that is potentially attacker-controlled
to an unconstrained symbolic value. For example, if the enclave attempts to read memory
outside of enclave memory, we return a fresh unconstrained symbolic value. Similarly,
all ECALL arguments are set to unconstrained symbolic values. As such, if the enclave
utilizes one of the ECALL arguments as a jump target, TeeRex will observe a jump to an
unconstrained value. The same mechanism is also used when the enclave loads a function
pointer from untrusted memory.

TeeRex also sets global variables inside the enclave to unconstrained symbolic value. The
idea behind this is to simulate prior ECALLs and also detect uninitialized reads. However,
this is an over-approximation, as not all global variables are necessarily attacker-controlled.
We utilize the same detection mechanism to detect if the enclave attempts to use a value
from uninitialized memory as a function pointer. However, we have to treat this finding
differently during post-processing and vulnerability report generation.

If, on the other hand, the enclave includes validation code for the jump target pointer,
then the symbolic execution will gather constraints on the symbol representing the jump
target. The jump target is now constrained to be within a certain set of allowed—assumed
to be safe—values, which will not trigger an alarm. We adapt the same convention as the
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underlying Angr framework and assume that a jump target is unconstrained if the SMT
solver can determine more than 256 different concrete values for the jump target.

Controlled Write The second exploit primitive that TeeRex identifies are writes to
arbitrary unconstrained memory addresses. An unconstrained memory write allows an
attacker to overwrite critical memory, such as return address or function pointers, in enclave
memory. To detect an arbitrary write, we utilize the pointer tracking component that
tracks every pointer dereference and propagates labels similar to taint analysis [CLO07b;
Vee+17]. This is needed to connect a pointer to its input source, including the level of
pointer indirection and corresponding pointer offsets.

Whenever a pointer is utilized for a memory write, TeeRex checks whether the address is
related to attacker-controlled memory. TeeRex then checks how the address is constrained.
To make a useful exploit primitive, the memory write must be able to write into nearly-
arbitrary enclave memory. TeeRex leverages the solver of the symbolic execution engine
to solve the path constraints up to the memory write and query whether the address can
possibly point to an arbitrary memory location within the enclave memory. If this is the
case, then we report an arbitrary-write exploit primitive.

When analyzing the memory write, we focus primarily on the address. We consider it as
an exploit primitive if the address is attacker-controlled. However, while we analyze the
value that is written, we report a vulnerability regardless of the value. This is because
any write, even of constant values, to an arbitrary address is very likely also exploitable
in the SGX scenario. For example, even a controlled write with a fixed byte value is often
sufficient to corrupt a pointer inside enclave memory. This is because the attacker has almost
arbitrary control of the address space layout of the host application, including the enclave
memory. As a result, it is often sufficient to partially corrupt a pointer to point somewhere
into insecure memory and simply map the resulting corrupted pointer into insecure memory.
We describe one such exploit in Section 4.3. As such, TeeRex reports any memory write to
an attacker-controlled address, regardless of the value written.

NULL-Pointer Dereference In the x86 virtual address space, the address valued 0 is a
regular address and can be mapped. However, in C and C++, the null pointer is used to
represent invalid pointers. For example, pointers are typically zero-initialized and, as such,
point to the address 0 by default. Many libraries also utilize a null pointer to signal an error
to the caller when a pointer is returned. For example, when a memory allocation with malloc
fails, a null pointer is returned. As such, null pointer dereference bugs are relatively common
in C/C++ code bases. However, null pointer dereferences are not considered especially critical
in most settings. This is because the null page is not mapped in a typical user space process.
In fact, many operating systems even prevent regular unprivileged processes from mapping
the null page as they were historically often used to exploit null pointer dereferences in the
operating system kernel. In stark contrast to other x86 software, in the SGX setting, a null
pointer dereference bug is extremely critical and most certainly exploitable. The problem
here is that the SGX enclave has nearly no control of the address space layout it is executed
within. In the SGX setting, the operating system is also untrusted, so there is basically
no way for an enclave to prevent a mapped null page. As such, TeeRex has a special
vulnerability detection component that identifies null pointer dereferences. In TeeRex, we
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analyze every memory access (read or write) and check whether the address is pointing to
the zero page mapped at address 0 (typically < 0x1000). Often, null pointer dereferences
can also be captured by the other vulnerability detection components. However, an explicit
detection component results in a better and more detailed vulnerability report.

4.2 Vulnerability Patterns
By design, SGX enclaves interface with untrusted code running in the same virtual address
space, introducing two privilege levels that can easily share data. The privileged software,
i.e., the SGX enclave code, can simply read the memory of the less-privileged software, i.e.,
the host application’s memory. The hardware prohibits access in the opposite direction.
Special care has to be taken when data is passed to the SGX enclave in the form of pointers,
as any pointer passed to the enclave can naturally point to the whole address space, that
is, the untrusted host and enclave memory. In this section, we discuss five major bug
and vulnerability classes and several other minor vulnerability classes. We distilled these
vulnerability classes from the findings that we presented in Section 4.3.

The common theme of all bugs we identified and discuss here is the insufficient validation
of pointers at the host-enclave boundary. In the remainder of this section, we discuss the
bug classes in detail and how they can be utilized during exploitation of enclaves. For every
bug class, we also provide recommendations on how to avoid the vulnerability pattern.

4.2.1 Passing Data-Structures with Pointers
Most complex data types in C/C++ use pointers as a primary mechanism to form complex
data structures like lists, trees, or maps. The Intel SGX SDK fully supports complex data
types, including pointer-based data structures. However, currently, the Intel SGX SDK does
not automatically perform a deep copy of pointer-heavy data structures. Consequently, it
becomes dangerous to pass data structures containing pointers to an enclave. Especially
when programming in C++, it is often unclear which data structures contain pointers and
which do not.

Figure 4.2 shows an example of this pattern, where the enclave receives a linked list as an
argument. Here each element of the linked list will point to the next element. The enclave
receives the first element of the list as a parameter. This element is passed by value, which
means that the Intel SGX SDK will automatically copy the first element to enclave memory.
However, since the Intel SGX SDK does not recursively copy the list, only the first element of
the list resides in enclave memory. The attacker can pass a list head structure that contains
a next pointer pointing to arbitrary memory, including trusted enclave memory. When the
enclave dereferences this pointer, the attacker can potentially corrupt enclave memory.

Guideline: Any pointer passed to the enclave directly or as part of a data structure must
be validated to point exclusively to normal world memory taking possible overlaps with
enclave memory into account. Any data structure containing pointers must be treated the
same way as pointers annotated with the [user_check] attribute. This means that in any
entry point to the enclave (ECALL) the enclave must walk all data-structures and validate
all pointers before the enclave dereferences any of those pointers. Due to possible TOCTOU
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1 // C Source
2 struct list_data;
3 struct list_head {
4 struct list_head* next;
5 struct list_data data;
6 // ...
7 }

1 // EDL
2 enclave {
3 trusted {
4 void ecall(struct list_head list_root);
5 };
6 };

Figure 4.2: Problematic EDL/C files which pass unsanitized pointers. The next pointer
is not automatically validated and can point to arbitrary memory (including
enclave memory).

issues, any data the enclave validates must be copied into enclave memory before validation.
Furthermore, the data must be properly cleared if the validation fails to not retain untrusted
data in enclave memory. The checks generated by the Intel SGX SDK only validate pointers
non-recursively. Therefore, the generated checks are insufficient to validate complex data
structures, such as lists, trees, or maps.

4.2.2 Using Pointers as Resource References
We observed the pattern that enclaves often provide the functionality to allocate some
resource, e.g., a TLS session or file object. To identify and distinguish multiple resources,
such as multiple TLS connections, the enclave returns a reference to this resource to the
host application, which is then passed to further calls to the enclave. If the normal world
code wants to use the newly allocated resource, then the corresponding function of the
enclave receives the corresponding reference as a parameter. In C/C++ code, this is typically
achieved by returning and passing a pointer to the object containing the resource’s data.
Especially ports of legacy code bases to SGX retrain this pattern in the enclave code.
However, in SGX enclaves, this is an extremely dangerous coding pattern. It is not possible
for an enclave to properly validate the pointer passed to the enclave.

We observed that enclaves perform some input validation in this case. They will typically
perform a check to validate that (a) the pointer is not null, (b) and the pointer is pointing to
enclave memory. However, it is fundamentally impossible for the enclave to validate whether
the pointer is really pointing to an object with the right type. As such, it is possible for
the attacker to violate the type safety of the enclave by passing a pointer to some enclave
memory. In turn, this will very likely lead to memory corruption, where the attacker abuses
the regular processing of the enclave to corrupt enclave memory.

As we show in Section 4.3, this pattern is typically exploitable. In many enclaves, it is
possible for an attacker to control some content of the enclave memory simply by providing
input to some enclave function. The trusted runtime part of the enclave then copies the
input (e.g., a simple string) into enclave memory.

Furthermore, it must be assumed that an attacker can break any information-hiding
defense, such as address or code randomization. As such, the attacker knows the address
of any attacker-controlled input in enclave memory [Lee+17]. This gives the attacker all
necessary prerequisites to inject a fake object into enclave memory. Tricking the enclave into
using this injected fake object will typically lead to memory corruption.
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Figure 4.3 shows a typical example of this problematic code pattern: A session pointer is
returned to the normal world in the new_session function and then supposed to be passed
to other ECALLs, such as the close_session function. However, the enclave cannot easily
validate the passed session pointer, leading to memory corruption when an attacker passes a
pointer to some other arbitrary enclave memory.

1 // EDL
2 enclave {
3 trusted {
4 struct Session* new_session();
5 void close_session(
6 [user_check] Session* s
7 );
8 /* ... */
9 };

10 };

1 // C++ Source
2 struct Session { /* ... */ }
3 Session* new_session() {
4 // allocate new Session on enclave heap
5 return new Session();
6 }
7 /* ... */
8 void close_session(Session *s) {
9 // insufficient pointer validation

10 const size_t SZ = sizeof(Session);
11 if (!sgx_is_within_enclave(s, SZ))
12 {
13 return;
14 }
15 // possible memory corruption
16 delete s;
17 }

Figure 4.3: Example of enclave code passing a pointer to/from untrusted user space as a
resource reference, a session object in this case. The pointer validation in the
close_session function is insufficient and can lead to memory corruption, when
an attacker passes a bogus session pointer.

Guideline: Enclaves must never return pointers to enclave memory to the host application
and must never take a pointer, which may point to enclave memory, as input from the host
application. Due to a lack of type and memory safety on the host-to-enclave boundary, an
enclave cannot validate pointers passed to the enclave based on the pointer alone. Whenever
an enclave must return a reference to an object in enclave memory to the host application,
the enclave must protect the reference. We suggest allocating an array of pointers to enclave
objects inside of enclave memory and returning array indices to the host application instead
of pointers, as shown in Figure 4.4. This approach is similar to the use of file descriptors on
Unix-like systems.
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1 // EDL
2 enclave {
3 trusted {
4 uint32_t new_session();
5 void close_session(
6 uint32_t session
7 );
8 /* ... */
9 };

10 };

1 // C++ Source
2 struct Session { /* ... */ }
3 uint32_t next_session = 0;
4 struct Session sessions[MAX_SESSIONS] =

{nullptr,};↪→

5 uint32_t new_session() {
6 if (next_session < MAX_SESSIONS) {
7 uint32_t r = next_session;
8 sessions[r] = new Session();
9 next_session++;

10 return r;
11 }
12 return -1;
13 }
14 /* ... */
15 void close_session(uint32_t session) {
16 if (session < next_session) {
17 if (sessions[session]) {
18 delete sessions[session];
19 sessions[session] = nullptr;
20 }
21 }
22 }

Figure 4.4: Using a session identifier instead of a pointer to avoid passing pointers across
privilege boundaries.
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Address Space

Enclave Memory

A

B

C

C

1 sgx_is_outside_enclave(A, sz) == true
2 sgx_is_within_enclave(A, sz) == false
3

4 sgx_is_outside_enclave(B, sz) == false
5 sgx_is_within_enclave(B, sz) == true
6

7 sgx_is_outside_enclave(C, sz) == false
8 sgx_is_within_enclave(C, sz) == false

Figure 4.5: Considering three different scenarios of buffer locations: Buffer A is located
strictly outside enclave memory, B strictly within and buffer C is neither. When
validating pointers the enclave must consider the scenario of overlapping buffers.

4.2.3 Pointers to Overlapping Memory
We observed that when passing pointers between the enclave and the normal world, the
enclave often utilizes the functions provided by the Intel SGX SDK to validate the given
pointer. One important aspect of pointer validation is to check whether the object behind
the pointer is contained within the enclave memory or outside. The Intel SGX SDK provides
two functions to achieve such validation: sgx_is_within_enclave and sgx_is_outside_-
enclave. Both functions receive a pointer and a length and return a boolean flag, whether
the given object, as defined by pointer and size, is strictly outside or within enclave memory.
However, there are three different scenarios that must be covered by the pointer validation
code: (1) stricly inside, (2) strictly outside, (3) overlapping. Figure 4.5 shows a visualization
of the three different scenarios and corresponding calls and results of the validation functions
from the Intel SGX SDK.

However, this API design can lead to unexpected results if the user is not aware of the
three scenarios. Figure 4.6 shows an example of a bug introduced by wrongly assuming the
negation of sgx_is_within_enclave is equal to calling sgx_is_outside_enclave. The
edge case of overlapping memory was not considered in this example. The developer’s
intention was to validate the pointer by checking whether the provided memory area is
inside of enclave memory and return an error if it is not. However, the pointer validation
with sgx_is_outside_enclave in Figure 4.6 can be bypassed by an attacker. They pass a
memory object starting inside of enclave memory but extending into non-enclave memory.

We observed this pattern (see Section 4.3) in conjunction with a previous pattern (see
Section 4.2.1). As such, when following the guidelines of this section, an enclave should
never have to validate a pointer parameter to point inside enclave memory. However, the
same issue also applies to pointers passed to the enclave as output parameters. For example,
if the enclave decrypts some content on behalf of the host program and writes the result
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1 // buggy check
2 if (sgx_is_outside_enclave(addr, size))
3 {
4 return ERROR;
5 }
6 // now addr still may be partly outside

1 // correct check
2 if (!sgx_is_within_enclave(addr, size))
3 {
4 return ERROR;
5 }
6 // now addr is strictly within
7 // the enclave memory

Figure 4.6: Enclave code that tries to validate that a memory region is inside of enclave
memory, but fails to handle the edge-case of memory overlapping between normal-
world and enclave memory. A proper check would validate whether the memory
area is not within enclave memory.

back to host memory via a pointer received as an argument. The enclave must validate that
the output pointer does refer to a memory area fully outside the enclave memory.

Guideline: The enclave must validate whether a pointer references normal or enclave
memory. We recommend to restrict pointer validation code to usage of the function
sgx_is_outside_enclave. This allows the enclave to validate that any buffer is strictly out-
side. Usage of the function sgx_is_within_enclave should be unnecessary when adhering
to the guideline with respect to passing pointers as resource identifiers (see Section 4.2.1).

4.2.4 NULL-Pointer Dereferences
C/C++ code commonly uses the special NULL (or nullptr) value to signal that a pointer
is not initialized or has been cleared. In reality, the pointer is simply set to the numeric
value 0. However, on a typical x86 system, which utilizes virtual memory, the address 0 is a
valid address. Typically, there is no valid memory located at the address 0. As such, any
accidental dereference of a null pointer results in a crash of the process (i.e., a SEGFAULT ).

However, in contrast to regular user space software, null pointer dereferences become more
dangerous in privileged software. For example, a common source of kernel vulnerabilities
in most major operating systems was null pointer dereferences. The address 0 is part of
user space memory in most major OS designs. Therefore, a null pointer dereference can be
exploited by a malicious process that maps valid memory at address 0. In this case the null
pointer dereference turns into a valid pointer dereference. When the kernel attempts to load
a value through a null pointer, the attacker can then make the kernel load a bogus value
from the page at address 0 instead of crashing. As mitigation for this type of attack, many
modern OS kernels, such as Linux or the Windows kernel, disallow mapping any memory
at address 0. Furthermore, many CPU architectures introduced special CPU modes that
prevent privileged kernel code from accidentally accessing user space memory.

Similarly to the kernel, null pointer dereferences in SGX are more dangerous than in
normal user space. In contrast to kernel code, there is no mitigation available for null pointer
dereferences inside SGX enclaves. First, the enclaves are considered part of the user space
application. Second, the OS kernel is untrusted in the SGX threat model. As such, it must
be assumed that the OS kernel is under the control of the attacker, and the attacker can
freely map the page at address 0. Since SGX enclaves cannot directly jump into normal world
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code, they cannot jump to address 0 mapped into normal world user space. As such, a null
pointer dereference while performing a jump or call is not exploitable. However, other null
pointer dereferences must be considered an attack vector for data-oriented attacks [Hu+16]
in the SGX enclave. Especially problematic are null pointer dereferences that occur when
loading code pointers. These give the attacker control over the control flow of the enclave
code, facilitating code-reuse attacks.

Guideline: An enclave must never dereference a null pointer. Any pointer dereference of a
nullable reference must be guarded by a null pointer check. Furthermore, we recommend
utilizing C++ references, which are essentially non-nullable pointers. They cannot result in a
NULL pointer dereference since they are required to be initialized with a non-null value.

4.2.5 Time-of-Check Time-of-Use
Enclaves in SGX run as part of a normal x86 user space process. As such, enclave developers
must ensure that the enclave code is also secure with respect to concurrency bugs (see
Section 2.1.2 for a general introduction to concurrency bugs). Intel already included a
method to limit concurrency for enclaves. The enclave developer can specify how many
concurrent threads may call into the enclave. This is done by setting the number of TCS
entries in the enclave’s metadata. As such, a thread-unsafe enclave can be made accessible
only to one host application thread at a time.

However, enclaves must also be aware of TOCTOU issues during input validation. When
an enclaves accesses host application memory, the enclave must assume that a separate host
application thread can change the content in the untrusted memory area. This problem is
amplified by the fact that a malicious host can interrupt and pause enclave threads at any
time, almost at the instruction granularity [VPS17].

Figure 4.7 shows an example of such a bug, where the enclave attempts to traverse a
single-linked list in host application memory. When the enclave utilizes the next pointer to
traverse to the next list entry, the enclave code validates that the next pointer does not refer
to an object in enclave memory. However, the depicted code in Figure 4.7 is vulnerable to a
TOCTOU issue due to a double-fetch bug. Here, the next pointer is always fetched from
normal world memory. First, the enclave validates that it does not point to enclave memory
with the sgx_is_outside_enclave function. After the call to the validation function, the
code fetches the next pointer again from untrusted memory and assigns it to the head
variable. However, a separate host application thread can easily change the value of the
pointer next between the call to the validation function and the assignment to the next
pointer. Effectively, this allows an attacker to bypass the pointer validation.

Guideline: Enclaves must not operate on data structures located in untrusted memory.
Enclaves must copy data structures into enclave memory before validation.

4.2.6 Minor Vulnerability Patterns
We identified several more potential vulnerability patterns during analysis of the attack
surface of the interfaces of enclave developed with the Intel SGX SDK. However, we did not
find any real-world enclave that exhibits the following code patterns. As such, it is still an
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1 struct X {
2 struct X* next;
3 // ...
4 }
5 struct X* head = some_normal_world_memory; // FETCH
6

7 // TIME-OF-CHECK
8 if (sgx_is_outside_enclave(head->next), sizeof(struct X)) {
9 // TIME-OF-USE

10 head = head->next; // DOUBLE-FETCH
11 // ...
12 }

Figure 4.7: SGX pointer validation vulnerability due to a time-of-check time-of-use problem,
specifically due to a double-fetch from untrusted memory.

open question whether any of the following patterns are common in enclave code. However,
for the sake of completeness, we include a detailed description of the patterns. As they are
similar to bugs found in non-enclave code, we believe it is likely that inexperienced enclave
developers could introduce one of the following issues.

Use-After-Free of ECALL Parameters

Many of the previously discussed patterns are due to developers working around the limi-
tations of the Intel SGX SDK using data structures and user-checked pointers. However,
there are also pitfalls when dealing with the auto-generated code of the Intel SGX SDK.
More specifically, the SDK generates code for copying primitive data types between host
and enclave memory on entry or exit of ECALLs and OCALLs. For example, the SDK fully
supports the C string type, i.e., a zero-terminated array of characters. Here the SDK will
automatically include code in the enclave to determine the string length in host memory,
allocate memory in the enclave for the string, and copy the contents of the string from host
memory to enclave memory. The custom ECALL handler of the enclave developer then
simply receives a char pointer as an argument like an ordinary C function. Similarly, any
data structure of fixed size is copied to enclave memory and passed by reference to the
ECALL handler.

There is a potential pitfall with respect to the lifetime of ECALL parameters that are
passed by reference to the ECALL handler. Namely, the lifetime of the object is the same as
the duration of the ECALL. Essentially, the trusted runtime of the Intel SGX SDK performs
an allocation before calling the ECALL handler and frees the object after the ECALL returns.
As such, the parameters must be basically treated as local variables with automatic lifetime.
However, as they are passed by reference, it is easy to confuse these parameters with objects
that have a global lifetime and leak references into global variables or heap-allocated data
structures. Effectively, if a pointer to an ECALL parameter is stored in global enclave state,
the pointer becomes a dangling pointer at the end of the ECALL. A second ECALL, will
then very likely reuse the memory for the parameter, potentially giving the attacker access
to a UAF issue, where the dangling pointer now points to an attacker-controlled memory
area. Figure 4.8 shows an example that illustrates this issue. The first ECALL handler
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1 // EDL
2 int first_ecall([string,in] char* x);
3 void second_ecall([in] struct some_t* t);
4 /********************************************************/
5 // C Source Code
6 char* global;
7

8 int first_ecall(char* x) {
9 // keep reference in global variable (.data or heap)

10 global = x;
11 /* ... */
12 // after the return, global becomes a dangling pointer
13 }
14

15 void second_ecall(struct some_t* t) {
16 // use global in a second ECALL: UAF
17 // global -> now points to some other object
18 memcpy(global, /* ... */ );
19 }

Figure 4.8: Use-After-Free (UAF) when the second ECALL uses a shared pointer variable,
set by the first ECALL to a parameter, which is not valid after the first ECALL
returns.

assigns the string parameter to a global variable, while the second ECALL handler then
utilizes this global pointer.

Guideline: Any ECALL parameter must be treated as a local variable and must never be
stored in global enclave state, such as global variables or in heap-allocated data structures.
In general, such lifetime issues can often be detected using static analysis tools. However,
to detect this pattern, the analysis tool must be adapted to the Intel SGX SDK generated
enclave code, as the local lifetime of the ECALL parameters is not directly visible to an
analysis tool.

Explicit Length vs. 0-Termination

C-style strings are notorious for causing memory corruption bugs during string handling
due to the fact that their length is determined by appending a zero-byte termination. Most
string processing functions simply receive a pointer to the beginning of the string without
knowing whether the given string is heap-, stack- or statically allocated. As such, string
parameters cannot be grown automatically, leading to buffer overflows if a function attempts
to modify a string in a way that would require increasing the length of the string. Similarly,
enclaves that receive string parameters must be careful to properly handle the string and
not introduce buffer overflows.

To avoid trouble with the C-style strings, many C code bases utilize explicit length
parameters to determine the length of strings instead of relying only on the zero termination.
This allows functions to perform bounds-checking with respect to the underlying allocation
of the C string. However, if such a function is ported to an SGX enclave, it is easy to
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1 // EDL
2 int ecall_func([in,string] char* x, size_t len);
3 /***********************************************/
4 // Source
5 int ecall_func(char* x, size_t len) {
6 // ...
7 func(x, len);
8 // ...
9 }

10

11 int func(char* c, size_t len) {
12 // ....
13 }

Figure 4.9: Legacy C function ported to an SGX enclave.

introduce a problem as depicted in Figure 4.9. Here, a legacy C code base was ported to an
SGX enclave. The enclave exposes an ECALL that receives a string parameter and a length
parameter. The ECALL handler wraps an internal function func that receives a buffer and
its length. However, in this case, the wrapper code generated by the Intel SGX SDK will
handle the string parameter differently. More specifically, the SDK will generate code to
determine the string length using zero termination and copy this length to enclave memory.
However, the SDK will not consider the len parameter as the actual length of the buffer.
Instead, the len parameter can be chosen arbitrarily by the attacker. For example, the
attacker could choose a length parameter that exceeds the size of the string buffer, which
causes a buffer overflow during processing.

We found short code excerpts containing this vulnerability in the official developer reference
documentation of the Intel SGX SDK for Linux. However, we did not encounter functional
enclaves that exhibit this issue.

Guideline: Enclaves must always rely on the Intel SGX SDK generated code to determine
the length of buffer and string parameters. Length parameters must always be marked
explicitly in the EDL file for the Intel SGX SDK to consider.

Reusing Input Strings as Output

The C language does not allow for larger return values. To work around this limitation and
to avoid needless copying, output parameters are used. The C function receives a pointer as
an argument that is then used to store the return value. Similarly, SGX enclaves built with
the Intel SGX SDK support output parameters for ECALL handlers. More specifically, in
the EDL file, the developer tags the pointer parameter with [out].

However, there is a problem if an enclave reuses a single parameter as an input and output
parameter. This problem is illustrated in Figure 4.10, where the example enclave receives
a string parameter that acts both as an input and output parameter. The enclave then
concatenates a second input string to the output parameter. However, the Intel SGX SDK
automatically determines the input string length and creates a copy in enclave memory As a
result, the length of the output parameter is implicitly limited to the length of the input
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1 // EDL
2 int ecall_strcat([string,in,out] char* dest,
3 [string,in] char* src);
4 /*********************************************/
5 // Source
6 int ecall_strcat(char* dest, char* src) {
7 // buffer overflow inside of enclave memory!
8 strcat(dest, src);
9 }

Figure 4.10: Vulnerable use of out-strings.

parameter. Appending data to the output parameter results in a buffer overflow within
enclave memory, even if the respective buffer in host memory is large enough to store the
output string.

Guideline: Enclaves should use dedicated separate arguments for the input and output of
strings.

4.3 Enclave Analysis Results
We gathered a set of 7 publicly available enclaves to evaluate the effectiveness of TeeRex.
We find that TeeRex is capable of identifying memory corruption vulnerabilities at the
host enclave boundary in six out of the seven enclaves. Note that our dataset consists of
real-world enclaves, including open-source and proprietary enclaves. This shows that memory
corruption errors at the interface boundary are common in current SGX enclaves.

We give an overview of the analyzed enclaves in Table 4.1. We gathered several enclaves that
are part of the official documentation of larger projects: the Intel GMP Example [SGXGMP]
developed by Intel as an official showcase for the Intel SGX SDK, the Rust SGX SDK’s
tlsclient [Dua+; Wan+19a] developed at Baidu as part of their efforts in developing a
Rust-based version of the Intel SGX SDK, and the WolfSSL Example Enclave [WOLFex],
which shows how to utilize WolfSSL in SGX. Furthermore, we include the academic project

Table 4.1: Dataset of public enclaves and their susceptibility to exploitation.
* One ECALL immediately branches to 75 different actions, which we model as separate ecalls in TeeRex.

Project Name Analyzed
Version

Exploit Patch
Available

Source
Code

Number of
ECALLs

SignalApp Contact Discovery 1.13 × - ✓ 7
Intel GMP Example 9533574f95b97 ✓ ✓ ✓ 6
Rust SGX SDK’s tlsclient 1.0.9 ✓ ✓ ✓ 8
TaLoS bb0b61925347b ✓ × ✓ 207
WolfSSL Example Enclave d330c53baff52 ✓ ✓ ✓ 22
Synaptics SynaTEE Driver 5.2.3535.26 ✓ ✓ × 2 (76)*

Goodix Fingerprint Driver 2.1.32.200 ✓ ✓ × 56
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TaLoS [Aub+17; TaLoS]. We also analyzed the SignalApp Contact Discovery [Mar17] that is
part of the Signal messenger ecosystem. All of the above enclaves have source code available.
To demonstrate the effectiveness of TeeRex on enclaves without available source code,
we also analyze two proprietary enclaves that are used by fingerprint drivers: Synaptics
SynaTEE Driver and Goodix Fingerprint Driver. These enclaves have been deployed to Dell
and Lenovo laptops.

To analyze the enclaves in our dataset, we first run TeeRex on the enclave. We then
analyze the vulnerability report produced by TeeRex. If source code is available, we utilize
the source code to perform root cause analysis and map the root cause to one of the patterns
described in Section 4.2. If no source code is available, we cannot always map the results
to one of the vulnerability patterns, as we have to resort to reverse engineering. Based on
the vulnerability report, we then construct PoC exploits to verify whether the finding is
truly exploitable. In our PoC exploits, we typically aim to hijack the instruction pointer
inside of the enclave. With control over the instruction pointer, we can then rely on existing
code reuse techniques, such as ROP [Sha07], to further attack the enclave. For example,
we applied the code-reuse technique introduced by Biondo et al. [Bio+18], which targets
enclaves built with the Intel SGX SDK.

We assume the standard SGX threat model [CD16; McK+13] for our PoC: our PoC exploits
assume they have full control over the OS and the full user-space address space. Some of
our PoCs exploits need to map data at address 0 to exploit NULL pointer dereferences. To
achieve this, we configure the Linux systems, based on Ubuntu 18.04, to allow this. For
the Windows enclaves, we had to resort to live patching the Windows 10 kernel to allow
mapping the NULL pointer. For the sake of simplicity of our PoCs we disable address space
layout randomization (ASLR), which is well within the capabilities of the attacker.

Notably, the SignalApp Contact Discovery enclave is the only enclave where TeeRex
did not identify a vulnerability. We found that this enclave has a comparatively small
and simple ECALL interface. As such, there is less possibility for mistakes. We can only
speculate, but we assume that this is because the enclave was developed by the security
and privacy specialists of the Signal Foundation. For all the identified vulnerabilities, we
performed responsible disclosure and worked with the vendors to fix the discovered issues.
In the remainder of this section, we discuss the technical details of the findings.
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Table 4.2: Overview of results of our analysis of public enclave code. Some of the patterns
are not applicable to some of the enclaves either, because the enclaves does not
use the relevant code constructs, or the source is unavailable and thus we cannot
determine the intention.
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P1: Passing Data-Structures with Pointers • • • - • •
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Exploit Primitive
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Controlled Write • - - - • •
NULL-pointer Dereference - - • - • •
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Intel GMP Example
As part of the documentation on SGX Intel provides a demo enclave that showcases the
support of the GNU Multiple Precision Arithmetic Library. The whole enclave features a bad
design and contains several insecure code patterns. Most notably the enclave freely passes
pointers between the enclave and host boundary. TeeRex also identifies several arbitrary
write exploit primitives. However, they all share the same root cause. As such, we now only
describe one vulnerability in more detail.

The enclave features an ECALL, which wraps the addition functionality of the GMP
big integer library. This ECALL receives three GMP big integers as parameters: two
input parameters for the addition and an output parameter. The enclave adds both input
parameters and then copies the result back to the output parameter. All parameters are
pointers that are annotated with the user_check attribute, which means that the developer
must validate these pointers.

TeeRex identified an arbitrary write exploit primitive in the enclave code, which we
then turned into arbitrary code execution as part of our PoC exploit. Note that while
the use of the user_check attributes already hints at a vulnerability, the actual problem
discovered by TeeRex is a pointer within the passed data structure. As such, even if the
data structure was changed to be fully copied to enclave memory, the issue would persist.
The problem is that the data structure behind the GMP big integer internally utilizes a
pointer to refer to an underlying buffer. The GMP big integers consist of several limbs, or
machine native words, which are stored in this buffer. TeeRex identifies this pointer to the
backing buffer as an attack vector. This pointer is not sanitized, which means that during
the mpz_set operation, a memory write to an arbitrary location is possible. Interestingly,
this vulnerability showcases the danger of utilizing an opaque data structure coming from a
software library at the host-enclave boundary. It is easy to miss that such a data structure
actually contains a pointer that must be sanitized.

The big integer data structures utilize dynamically allocated storage internally. As such,
they must contain a pointer to the underlying buffer that stores the values of the limb
integers. Figure 4.11 shows part of the vulnerable code. Here, the mpz_set function simply
copies the output to the attacker-controlled underlying buffer of the c_unsafe big integer.
The problem is that the enclave uses functionality of the GMP library that was not designed
for SGX. It neglects the fact that the underlying buffer of this big integer can actually point
to arbitrary memory, including enclave memory.

This vulnerability allows an attacker to perform an arbitrary memory write with controlled
content and controlled size. In our PoC exploit, we abuse the e_mpz_add ECALL. We utilize
the input parameters to control the values that are written. We set a_unsafe to the memory
contents that we want to write. We set the big integer b_unsafe to a big integer initialized
as 0, ensuring that the actual computation of the GMP library has no effect. We then
manipulate the pointer to the underlying buffer of the c_unsafe data structure to point to
our target address for the arbitrary write. We choose to directly write to the enclave stack,
which allows us to directly write a ROP payload to the enclave stack. Once the enclave
returns, it will execute our ROP payload.

Intel acknowledged the problem, updated their documentation, and fixed the issue by
using serialization. Instead of passing pointers to GMP structures, the demo code now
serializes GMP big integer objects to strings. This avoids dangerous pointer validation as
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1 // EDL
2 public void e_mpz_add(
3 [user_check] mpz_t *c_unsafe,
4 [user_check] mpz_t *a_unsafe,
5 [user_check] mpz_t *b_unsafe
6 );

1 void e_mpz_add(mpz_t *c_unsafe,
2 mpz_t *a_unsafe,
3 mpz_t *b_unsafe) {
4 mpz_t a, b, c;
5

6 // ...
7 /* The enclave now computes: */
8 /* c = a + b */
9 // ...

10

11 // mpz_set copies the underlying buffer
12 // of the biginteger "c" to the buffer pointer
13 // contained in the "c_unsafe" variable
14 mpz_set(*c_unsafe, c);
15 }

Figure 4.11: Excerpt of the vulnerable code in the Intel GMP Example enclave.

strings are automatically validated by the Intel SGX SDK. Inside the enclave, the input
parameters are deserialized, the computation is performed, and then serialized and returned
to the host application. This completely avoids the problematic pattern of passing pointers
between host and enclave.

WolfSSL Example Enclave
The WolfSSL [WOLF] project develops a TLS library that is also fit for other use cases, such
as embedded devices and small and self-contained applications. As such, the library comes
without the need for external dependencies. This also makes the WolfSSL library applicable
to run in the SGX context. The library ships with an example for utilizing the WolfSSL
library code within a SGX enclave. This example shows how to terminate TLS connections
directly inside the SGX enclave, shielding the cryptographic secrets required for running the
TLS protocol from the OS. However, to achieve this, the enclave exposes many APIs, which
essentially wraps the original WolfSSL API.

An analysis with TeeRex revealed a control-flow hijacking exploit primitive. Our root-
cause analysis showed that the enclave follows the dangerous pattern of passing pointers and
performs insufficient validation (see Section 4.2). More specifically, the enclave API requires
the user to allocate a TLS session object in secure memory before calling any other APIs.
The session object is represented as a raw pointer and returned by the enclave to the host
application. The host application then passes the raw pointer to the enclave in subsequent
calls, e.g., when data is received over the network. The enclave uses the same pattern also
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1 /* ECALL Definition in EDL */
2 // a pointer to enclave memory returned
3 public WOLFSSL* enc_wolfSSL_new([user_check] WOLFSSL_CTX* ctx);
4 // pointer is passed to enclave
5 public int enc_wolfSSL_connect([user_check]WOLFSSL* ssl);
6 // ...

1 /* C Source Code */
2 typedef int (*CallbackIOSend)(WOLFSSL *ssl, char *buf,
3 int sz, void *ctx);
4 /* WolfSSL session type */
5 struct WOLFSSL {
6 WOLFSSL_CTX* ctx;
7 /* ... */
8 // attacker-controlled function pointer!
9 CallbackIOSend CBIOSend;

10 }
11 // ...
12 int enc_wolfSSL_connect(WOLFSSL* ssl) {
13 // insufficient validation
14 if(sgx_is_within_enclave(ssl, wolfSSL_GetObjectSize()) != 1)
15 abort();
16 /* ... */
17 }

Figure 4.12: Relevant parts of the EDL definition and C source code of the tlsclient enclave.

for other types, such as a context type or I/O buffer objects. We discuss one of the exploit
primitives discovered by TeeRex in more detail.

Figure 4.12 depicts the vulnerable code of the enclave. To allocate a new TLS session,
the host application passes a WOLFSSL_CTX pointer type to the enclave. The enclave
returns a pointer to the WOLFSSL object that represents a TLS session. TeeRex identifies
a weak point in this design: the WOLFSSL data structure contains a function pointer that
the enclave uses to perform callbacks in the TLS library (CBIOSend). The usage of this
function pointer in the WOLFSSL data structure is discovered by TeeRex as a control-flow
hijack, as the pointer to the data structure is fully attacker controlled.

However, the enclave does not accept fully arbitrary pointer parameters. The enclave
code validates that the pointer passed in the ECALL does in fact point to enclave memory.
However, this pointer validation is not sufficient to prevent the exploitation. As discussed in
Section 4.2, the enclave memory often contains attacker-controlled content. For example,
if the enclave attempts to validate data passed by host memory or if the enclave accepts
string parameters. In our PoC exploit, we abused the function enc_wolfSSL_CTX_use_-
PrivateKey_buffer to inject a fake WOLFSSL data structure into enclave memory. However,
there are multiple other suitable APIs. Our PoC abuses the enc_wolfSSL_connect function,
which retrieves the function pointer for the callback from the injected data structure, giving
the attacker full control over the instruction pointer. Ultimately, this allow the attacker to
perform code-reuse attacks and exfiltrate any data that is supposedly protected.
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We disclosed this issue to the authors of the WolfSSL project. Similar to our recommen-
dations in Section 4.2, they switched to using integer-based session identifiers instead of
passing pointers.

Rust SGX SDK’s tlsclient/server
The Rust SGX SDK, developed at Baidu and later moved to the Apache Project, is an
interesting analysis target. This project attempts to build a memory-safe wrapper around
the Intel SGX SDK, using the Rust language as a modern memory-safe alternative to C/C++.
As such, enclaves built using this SDK contain fewer memory safety issues. However, our
analysis revealed memory safety issues at the boundary between the host and enclave: an
interface that is not covered by Rust’s guarantees. More specifically, the programmer has
to resort to the C ABI to communicate between host and enclave. In turn, this makes it
necessary to use unsafe code in rust, code where the compiler does not guarantee memory
safety.

We analyze code shipped with the Rust SGX SDK that shows how to run a TLS server
and client inside an SGX enclave. In terms of functionality, this is quite similar to some
of the other enclaves we analyzed, e.g., the WolfSSL or TaLoS enclaves (see Section 4.3
and Section 4.3 respectively). The Rust SGX SDK project ships with two applications
that represent a TLS client and server, which allows direct communication between two
enclaves. Since both applications are quite similar with respect to the enclave interface, we
only analyzed the tlsclient enclave.

Similar to the other TLS enclaves, the rust enclave exposes an enclave API that exposes
a function to create a new TLS session. This session object can then be used to encrypt
and decrypt data that is sent or received. TeeRex identifies a vulnerability leading to
instruction pointer control in the tls_client_write function. Here the exploit primitive
discovered by TeeRex abuses the session pointer parameter of the ECALL. The enclave
utilizes the common anti-pattern of passing a pointer as a resource identifier. TeeRex then
identifies a way to exploit this pattern.

Figure 4.13 shows the vulnerable part of the tlsclient enclave code. Here, a new TLS
session object is allocated with the tls_client_new function. Subsequently, the returned
pointer must be passed to further API calls, such as the tls_client_write function depicted
in Figure 4.13. The parameter must be marked as user_check for the Intel SGX SDK to
accept a raw pointer. This moves the burden of validating a pointer to the enclave developer.

TeeRex identifies a nested object inside the TLSSession data structure, which contains
a virtual method table (vtable) pointer. This vtable pointer is used by the compiler to
implement dynamic dispatch, i.e., it associates a set of method implementations with an
object instance. Depending on the type of the object, the compiler will jump to the right
method implementation by using the indirection via the vtable pointer. However, controlling
the vtable pointer is typically equivalent to controlling the instruction pointer. The attacker
can make the vtable pointer refer to attacker-controlled memory that contains a fake vtable.
Subsequently, the victim code dereferences the vtable pointer to look up the method in the
fake vtable and perform an indirect jump to the value from the fake vtable. As such, this
attack vector has also received significant attention from the research community, developing
various exploit mitigation technologies, such as multiple CFI variants [Sze+13; Tic+14].
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1 /* ECALL Definition in EDL */
2 public void* tls_client_new()
3 public int tls_client_write(
4 [user_check] void* session,
5 [in, size=cnt] char* buf,
6 int cnt);

1 // Rust Source Code
2 pub extern "C" fn tls_client_write(session: *const c_void,
3 bu: * const c_char,
4 cnt: c_int) -> c_int {
5 ➀ if session.is_null() {
6 return -1;
7 }
8

9 ➁ if rsgx_raw_is_outside_enclave(session as * const u8,
10 mem::size_of::<TlsClient>()) {
11 return -1;
12 }
13 rsgx_lfence();
14

15 let session = unsafe { &mut *(session as *mut TlsClient) };
16 // [...]
17 }

Figure 4.13: Vulnerable Rust code: Check ➁ can be bypassed.

However, the enclave performs some validation on the received pointer: it must not be null
(➀ in Figure 4.13) and must not be outside enclave memory (➁ in Figure 4.13). Similar
to the attack against the WolfSSL enclave (see Section 4.3), this could be exploited by
injecting the fake TLSSession object into the enclave memory using some unrelated function.
However, the enclave exhibits another anti-pattern that can be exploited here. Namely, the
pointer validation does not account for the possible three states concerning a memory object
(see Section 4.2.3). As such, the check at ➁ is not sufficient to sanitize a pointer.

In our PoC exploit, we chose to bypass the pointer validation using overlapping memory.
We map the memory pages right before the first enclave page into the normal user space of
the host application. We then place a fake TLSSession object at the page boundary, such
that only the last byte of the TLSSession object is within enclave memory. This makes
the pointer validation at ➁ in Figure 4.13 succeed, as the object is not strictly outside
enclave memory anymore. However, this gives us complete control over anything interesting
contained in this object, including the vtable pointer, which now resides in host application
memory. Now we simply let the vtable pointer refer to a fake vtable, where we can place the
start of our code-reuse attack. Note that the last byte of the TLSSession object is not used
during the ECALL that is exploited in our PoC, so the value of the last byte does not have
any side effects on the execution of the enclave.

Even though this enclave uses a robust memory-safe language, TeeRex was able to
identify a vulnerability at the interface boundary between the host and the enclave. Here the

72



Chapter 4 Symbolic Execution of SGX Enclaves

compiler-enforced memory safety guarantees of Rust do not hold anymore, as the boundary
is necessarily implemented using unsafe rust or C code. This highlights the need to develop
safe interface bindings for memory-safe languages, such as rust. Low-level details should not
be exposed to enclave developers.

We disclosed our findings to the developers of the Rust SGX SDK, who acknowledged the
issue and promptly developed a patch. Instead of using pointers as resource identifiers, they
switched to using integer identifiers, which are mapped to the objects using a hashmap. As
such, no pointers need to be passed over the host-to-enclave boundary. The attack surface is
drastically removed, and both anti-patterns regarding pointer sanitization are removed from
the enclave code.

TaLoS
The TaLoS project is an open-source enclave that was created as part of an academic
project. The idea of the enclave is to provide a shielded version of a TLS library, essentially
terminating the TLS-secured connection inside the enclave. However, integrating a shielded
TLS library into classical software is challenging due to the tight integrating. For example,
the Apache Webserver tries to directly call the API of the TLS library libressl. As such, the
TaLoS project provides a wrapper library for the host that forwards all calls to the enclave.
To make the transition to using the enclave a TLS library easier, TaLoS exposes a one to
one mapping of the libressl API. As such, the enclave interface extensively exposes pointers
that are marked as user_check in the corresponding EDL file. However, the enclave does
not perform sufficient checks on the passed pointers. As such, TeeRex is able to identify
various exploit primitives.

However, the enclave does not simply return a raw pointer as it is the case for the other
TLS enclaves (see Section 4.3, and Section 4.3). Interestingly, the TaLoS enclave has a
built-in shadowing mechanism: the enclave duplicates relevant data structures in both host
and enclave memory [Aub+17]. Primarily, the shadowing mechanism is used to allow the
host application to access fields of data structures used by the TLS library. This allows
unmodified host applications to load and use the enclave. The enclave code contains manually
written code to synchronize selected fields of important data structures, such as the primary
SSL data structure. In principle, the shadowing mechanism would also allow the enclave
to perform extensive validation of the received pointer arguments. However, in the version
of the enclave that we analyzed, we found various issues with this shadowing mechanism
due to the manual approach of shadowing the data structures. The exposed API is quite
comprehensive. TeeRex identified multiple exploit primitives in the enclave, including in
the code that performs the data structure shadowing.

Figure 4.14 shows the relevant parts of the enclave, which implements the shadowing
mechanism. Here, TeeRex discovered the NULL pointer dereference. However, the code
contains several other issues. For example, the parameter out_s is not validated to lie
outside of enclave memory (➀ ). To exploit the NULL pointer dereference, the attacker must
pass a bogus value for the out_s parameter. In turn, the call to hashmapGet will fail and
return NULL to indicate an error. However, this return value is not further validated (➁ ),
and as a result, in_s becomes NULL. This turns the shadowing mechanism at ➂ into an
arbitrary read exploit primitive. The attacker can let out_s point to an arbitrary location
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1 BIO* ecall_SSL_get_rbio(SSL *out_s) {
2 ➀ // out_s is not checked, can be in enclave memory
3 /** Shadowing Mechanism **/
4 hashmap* m = get_ssl_hardening();
5 // returns NULL for invalid out_s
6 ➁ SSL* in_s = hashmapGet(m, out_s);
7 // copy arbitrary enclave memory to the NULL page
8 ➂ SSL_copy_fields_to_in_struct(in_s, out_s);
9 ➃ /* [...] libressl logic */

10 // copy from the NULL page to arbitrary enclave memory
11 ➄ SSL_copy_fields_to_out_struct(in_s, out_s); // [...]

Figure 4.14: Relevant parts of the EDL definition and C source code of the TaLoS enclave.

inside the enclave memory. The shadowing mechanism at ➂ will then copy the content from
enclave memory to the page mapped at address 0.

Furthermore, the same code can also be abused by an attacker to gain an arbitrary write
exploit primitive. After the logic of the libressl TLS library is done (➃ in Figure 4.14), the
synchronization code again synchronizes the enclave internal data structure with the data
structure in host memory. At ➄ the synchronization code copies the fields of in_s structure
to the out_s structure. However, the attacker can make the out_s data structure point to
enclave memory, and due to the failed hashmap lookup, in_s points to the page at address 0.
As such, the enclave will copy arbitrary values from host memory to an arbitrary location
within enclave memory. Together, this gives an attacker a powerful arbitrary read/write
exploit primitive. However, the attacker has to win a race for effective exploitation, as the
attacker must inspect and change the value while the code at ➃ is executing. This can
be achieved by using a second thread in the user space of the malicious host application.
Alternatively, the attacker can reliably exploit this by interrupting the enclave using at just
the right time. Previously it was shown that the timer interrupts are precise enough to
essentially single-step enclave code, making it trivial to exploit such race conditions [VPS17].

Besides the arbitrary read/write exploit primitive TeeRex also discovered a control-flow
hijacking exploit primitive. Namely, similar to the other TLS enclaves, TeeRex identifies a
function pointer used for a callback in one of the primary data structures (the SSL_CTX).
In contrast to other data structures, there is no shadowing of this pointer in the enclave.
In fact, the enclave does not validate the pointer or the data structure at all. As such, to
exploit this issue, the attacker must simply craft a fake data structure in host memory and
call the vulnerable ECALL (ecall_SSL_CTX_ctrl).

Synaptics SynaTEE Driver
We identified several fingerprint drivers for Windows that utilize the SGX technology to
securely process biometric data. The first fingerprint driver we encountered was introduced
by Synaptics and is utilized on modern Lenovo laptops. The fingerprint driver delegates
parts of the fingerprint-based authentication to a user-space component that utilizes a SGX
enclave. In our evaluation, this is also the first closed-source enclave designed to run on the
Microsoft Windows OS. Here several of the pre-processing modules of TeeRex are required
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to hook statically linked standard library functions for more efficient symbolic execution.
Furthermore, we noticed that the enclave only utilizes two different ECALLs, a suspiciously
low number given the size of the enclave. This is because the enclave multiplexes several
commands over one of the two ECALLs. Using manual analysis, we noticed that while
TeeRex was still able to analyze the enclave, the analysis is much faster and is able to
identify more findings if we change the analysis entry point. Instead of starting at the actual
ECALL entry points, we start at the entry points of the several command handlers that
handle the various multiplexed ECALLs.

TeeRex discovered a control-flow hijacking primitive resulting from a NULL-pointer
dereference. In the enclave code, there is a global pointer variable, which points to a data
structure that is expected to be in enclave memory. However, this pointer is initialized as
a NULL pointer, and the enclave features an ECALL that allows an attacker to trigger
dereferencing the global pointer without initializing the global pointer first. As such, the
attacker can exploit the fact that the NULL pointer refers to host memory.

However, exploiting a NULL pointer dereference on a modern Windows OS is cumbersome,
as the latest Windows versions disallow mapping the page at address 0. The SGX threat
model would allow an attacker to override this setting. While this cannot be easily disabled,
it is possible to patch the Windows kernel to disable the check. We demonstrate the feasibility
of this approach with our exploit for the Goodix enclave in Section 4.3. To achieve a pure
user-space exploit for the Synaptics enclave, we chose a different route for exploitation.

In the vulnerability report, TeeRex also reports secondary findings, which are not
exploitable alone, but potentially ease writing full exploits (see Section 4.1). More specifically,
TeeRex identifies a limited write exploit primitive in the enclave due to an improperly
sanitized data structure that contains many pointers. This primitive allows an attacker
to write a single byte with a fixed value to an arbitrary address. While this primitive is
not enough to achieve, e.g., full control-flow hijacking, it still allows an attacker to corrupt
enclave memory and continue exploitation from there. As a first step, we utilize this limited
primitive to overwrite one byte of the NULL-initialized global pointer, such that this pointer
refers to a known location in host memory. Corrupting the pointer first bypasses the need
for mapping the page at address 0.

In our PoC exploit, we chain the limited write and the control-flow hijacking primitive.
First, we corrupt the global pointer with the fixed value. Second, we map the memory referred
to by the resulting pointer. Third, we prepare a fake data structure in the freshly mapped
memory. Finally, we trigger the ECALL that dereferences the—now corrupted—global
pointer and achieve a control-flow hijacking primitive.

Goodix Fingerprint Driver
The second fingerprint-reader driver we analyzed is shipped on recent laptops produced by
Dell and is developed by Goodix. Similar to the fingerprint-reader driver of Synaptics, a
user-space component with a SGX enclave is used. Again we performed black-box binary
analysis of the enclave with TeeRex. This analysis resulted in the discovery of several
limited write primitives, two of which we utilize in our PoC exploit.

The first primitive, which we denote as C16, is a NULL-pointer dereference that copies a
16 bit value from the NULL pointer to an arbitrary address supplied by the attacker. As we
discussed earlier for the Synaptics SynaTEE Driver PoC exploit (see Section 4.3), exploiting
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a NULL pointer dereference comes with significant effort on modern Windows systems. To
map the page at address 0 on Windows, we need to first patch the kernel using an attached
debugger. The patched kernel then simply allows mapping the address 0 in a normal user
space application. Note that the patch guard of the Windows kernel periodically scans kernel
code and attempts to detect code corruption, which further complicates exploitation.

However, since we have discovered only a 16 bit write primitive, we cannot fully overwrite
pointer values to gain a stronger exploit primitive (e.g., a control-flow hijack). While a
partial overwrite is often already sufficient to launch a code-reuse attack [Dur02], we opted to
chain to primitives to achieve a full arbitrary write of a 64 bit value. To do so, we introduce
a second limited exploit primitive F64. The primitive F64loads a value from a fixed address
A within enclave memory but writes this value to an arbitrary attack-controlled pointer.
Since the value is within enclave memory, the attacker cannot control it, and as such, this
primitive is of limited use alone. However, we can use the first primitive C16to set the value
at address A. We utilize four invocations to C16to write a full 64 bit integer. We then utilize
F64to copy this value to an arbitrary location inside enclave memory, effectively gaining an
arbitrary write. We can then overwrite, e.g., a return address on the enclave stack to launch
a code-reuse attack. This exploit shows that the auxiliary exploit primitives discovered by
TeeRex are useful to a human analyst, who can quickly combine multiple limited exploit
primitives to upgrade to a full arbitrary write exploit primitive.

4.4 Performance and Accuracy
Previously, we primarily discussed the findings of TeeRex in several enclave projects. With
this, we demonstrate that TeeRex is a viable approach for enclave analysis. In this section,
we discuss the efficiency and effectiveness of TeeRex as an analysis tool. We focus our
analysis on the three enclaves Intel GMP Example, Rust SGX SDK’s tlsclient, and WolfSSL
Example Enclave since for these (1) the source code is available, and (2) a patched version
is available to us. These properties allow us to analyze TeeRex analyses in more detail,
as we can compare the analysis on the vulnerable and fixed enclaves. This allows us to
reason about the occurrences of false alarms. First, we verified the source-level patches for
the three enclaves we use for performance evaluation. Since source code is available, we
can analyze the patched code in detail and determine whether a newly reported finding is a
false positive. Second, we can obtain more realistic performance numbers on the patched
enclaves. Unfortunately, our dataset of enclaves consists of enclaves that contain multiple
pointer validation vulnerabilities. In fact the vulnerabilities are so prevalent that we cannot
properly assess the performance of TeeRex. As such, we measure performance on patched
enclaves to obtain measurements of TeeRex analyzing enclaves where pointer validation
bugs are not as prevalent as in our current dataset of unpatched enclaves.

4.4.1 Performance and Memory Usage
When running TeeRex, we analyze each ECALL using TeeRex for a maximum of 20 min
using a single CPU core and a memory limit of 24 Gbyte. The analysis was conducted on
an AMD EPYC Processor with 3.7 GHz and 100 Gbyte RAM allowing us to analyze up to
4 ECALLs in parallel. TeeRex utilizes angr version 8.20.1.7 running on CPython 3.6.9
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Figure 4.15: Runtime and memory usage of the benchmarked enclaves.

and Ubuntu 18.04.4. All the exploitable primitives that we utilized in our PoC exploits are
discovered within our time window of 20 min.

For the three enclaves (Intel GMP Example, Rust SGX SDK’s tlsclient, and WolfSSL
Example Enclave), we analyzed the 73 ECALLs in detail. The results are depicted in
Figure 4.15. Symbolic execution tends to be limited by the available memory due to state
explosion. The average memory usage overall ECALLs of those enclaves is 8.8 Gbyte, with a
standard deviation σ = 9.8 Gbyte). The high standard deviation can be explained by the
high variability of code size and code complexity of the ECALLs. 40 % of the analyzed
ECALLs finished within 10 s, Further 52 % finished within the given limits. However, 48 %
exceeded the resource limits. More specifically, 23 % by time, also 23 % by memory, and 1 %
by time and memory.

We chose the resource limits empirically, after performing several analysis runs. As our
findings show (see Section 4.3), these time and memory constraints allow TeeRex to uncover
problematic code patterns. In a more realistic setting, an analyst can invest more time and
memory for specific ECALLs. Nevertheless, symbolic execution is a powerful but resource-
hungry program analysis technique. There are many techniques that allow improving the
efficiency of symbolic execution [Avg+14; Bal+18; Cha+12], which we did not yet integrate
into our prototype.

4.4.2 Accuracy and False Alarms
We designed TeeRex with soundness in mind and typically sacrificed completeness of the
analysis, i.e., using our resource-constrained analysis strategy. As such, the number of false
alarms is generally relatively small. Note that we cannot provide a full analysis of false
alarms and missed bug rates, as we lack a dataset with ground truth. All our findings
were previously unknown zero-day vulnerabilities. Prior to TeeRex, there were no other
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automated vulnerability analysis tools available that are capable of identifying vulnerabilities
specific to SGX enclaves. As such, we cannot compare TeeRex to prior work.

We use the following strategy to assess the accuracy of TeeRex. First, we manually
confirm all findings by constructing PoC exploits. We also worked with the vendors to
confirm the vulnerabilities and obtain patched versions of the enclaves. Whenever source
code was available to us, we also verified, using TeeRex and manual analysis, that the
vendors correctly fixed the issues that we reported. As such, we can be certain that the
enclaves Intel GMP Example, Rust SGX SDK’s tlsclient, and WolfSSL Example Enclave do
not contain any further vulnerabilities. We can then assume that any finding of TeeRex
on the patched enclave is a false alarm, giving us a limited form of ground truth. Our
analysis of the three vulnerable enclaves TeeRex produced 149 findings. The large number
of findings can be explained by the vulnerable code patterns that are present several times
in the enclaves. By manual deduplication and with our PoC exploits, we confirm that those
findings are correctly reported alarms. For each of the vulnerabilities, we selected gadgets in
shallow program paths with the smallest number of constraints on the initial state. This
allows us to write simpler PoC exploits.

Next, we analyzed the patched versions of the enclaves. First, we are able to confirm
with TeeRex that the vulnerabilities we originally exploited are no longer present in the
enclave code. However, the analysis of TeeRex still identified 56 major findings. Analysis
of those findings reveals a source of false alarms in TeeRex: global memory is treated as
unconstrained symbolic memory (see implementation details Section 4.1).

In TeeRex, we decided to mark all global enclave memory as unconstrained symbolic
memory. This allows TeeRex to analyze program paths that would require a sequence
of ECALLs without executing a sequence of ECALLs. We observed a common pattern
in enclave code where certain ECALLs first require a preceding call to another initializer
ECALL. For example, we identified this pattern in the Intel GMP Example, which utilizes a
special ECALL that initializes a function pointer in a global function pointer. By marking
the global enclave memory as unconstrained values, TeeRex reports a controlled jump.
This is because TeeRex does not identify any further constraints during the execution of
the ECALLs. As such, TeeRex believes that the function pointer is not checked before its
use. However, in reality, the enclave offers only a limited—and safe—number of ways to set
the jump target. As such, this finding is not exploitable on its own. We identified similar
false positives in some of the other patched enclaves. The Rust SGX SDK’s tlsclient and
WolfSSL Example Enclave enclaves show false alarms due to similar issues. However, it is
not clear how to handle such findings because the same finding can become useful as part of
a longer exploit chain. For example, it could be used to turn an arbitrary write primitive into
a control-flow hijacking primitive. As such, it would be detrimental to completely filter such
findings. In future work, it would be beneficial to extend TeeRex with a post-processing
analysis that ranks findings according to severity based on further analysis (e.g., using the
pointer tracking component).
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4.5 Discussion and Conclusion
SGX is a promising upcoming security technology that can be used to strongly isolate
sensitive code and data into enclaves. SGX greatly reduces the TCB. However, it also creates
a new attack surface: the host-to-enclave boundary becomes highly critical and dangerous.
By design, the enclave processes and operates on input originating from untrusted memory
space. Implementation errors in the code handling the boundary are easy to introduce and
quite fatal. Based on our real-world findings with TeeRex, we describe several vulnerability
patterns that are easy to introduce in code written for the Intel SGX SDK. Our analysis
shows that these patterns are especially common when porting legacy code to SGX.

In this chapter, we present TeeRex, the first automated vulnerability analysis tool
explicitly tailored to SGX enclave binaries. We show that symbolic execution is a fruitful and
feasible approach to automatically vet enclave code for bugs on the host/enclave interface.
TeeRex uses symbolic execution to precisely reason about program paths in the enclave
interface and discover memory corruption vulnerabilities. Going even further, TeeRex
reports memory corruption vulnerabilities as exploit primitives, such as arbitrary writes or
control-flow hijacking. This allows an analyst to quickly construct PoC exploits to determine
the severity of the findings.

Limitations While symbolic execution is a powerful program analysis technique, it has
several drawbacks that TeeRex inherits. First, we attempt to mitigate state explosion by
implementing an ECALL centric analysis in TeeRex. This means we can analyze available
ECALLs in parallel, exploiting multi-core systems for analysis. However, we noticed several
cases where this ECALL centric analysis is not enough to mitigate state explosion. For
example, we identified one enclave that essentially multiplexes several ECALLs over one
ECALL. Running the default analysis of TeeRex would result in a path explosion problem
as TeeRex would not detect this multiplexing, leading to a large number of analysis states.
In the case of this enclave, we were able to circumvent this issue by starting analysis at the
handlers for the multiplexed ECALLs. However, this approach requires manual analysis and
is not applicable to all enclaves.

Furthermore, the symbolic environment that TeeRex uses to emulate the target enclave
does not precisely replicate the real enclave environment, which causes TeeRex to miss
certain bug classes. For example, TeeRex replaces the allocator of the enclave with a
simplified simulated allocator that is provided by the Angr framework if it can identify
the enclave’s allocator (e.g., using symbols). The emulated allocator always returns a new
memory address and never returns a memory address that is already in use. This simplifies
symbolic execution and avoids costly symbolic execution of the memory allocator. However,
the downside of this approach is that temporal memory errors cannot be identified anymore.
For example, because the emulated allocator does not reuse memory, TeeRex will never
encounter a use-after-free. However, in large C++ code bases, temporal vulnerabilities make
up for the bulk of the vulnerabilities [Tho19; Zer]. Detecting temporal vulnerabilities would
require extending TeeRex with more precise analysis and modeling of the enclave heap
during analysis [Eck+18; Gri+22]. Alternatively, TeeRex could be used as the basis for a
hybrid symbolic execution and fuzzing approach, where it is much easier to detect temporal
vulnerabilities such as use-after-free issues [Clo+22; Sho+16; Ste+16].
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Finally, TeeRex also does not model the full set of interactions that are possible. For
example, TeeRex only approximates ECALL sequences by marking global memory as
unconstrained symbolic. This allows TeeRex to explore paths within an ECALL that
would normally only be reachable with multiple ECALLs. However, this is also the single
source of false alarms that we noticed during our evaluation of TeeRex (see Section 4.4).
Naturally, this approximation could be avoided by chaining multiple ECALLs during analysis.
However, this introduces a simple combinatorial path explosion into the symbolic analysis
process: after every ECALL, the attacker can call every other ECALL. Practically speaking,
chaining ECALLs would also entail modeling the OCALL mechanism. Currently, TeeRex
stops execution when it encounters an enclave exit, whether the enclave exit is caused by
an OCALL or because of a regular enclave return. If the enclave has support, one would
also need to consider reentrant ECALLs that can happen during an ongoing OCALL. This
combinatorial path explosion is common to all secure execution environments that expose a
library-like interface. We discuss tackling analysis of full call chains, including reentrancy, in
Chapter 5 using Ethereum smart contracts as our targets.

Conclusion TeeRex uses symbolic execution to analyze the host/enclave interface. Using
TeeRex, we identified several vulnerabilities in public enclaves, including two fingerprint
drivers developed by Synaptics and by Goodix, three TLS libraries, and a project published
by Intel. We developed PoC exploits based on the exploit primitives discovered by TeeRex.
The report produced by TeeRex is detailed enough to quickly construct such exploits.
While TeeRex inherits the limitations of symbolic execution, primarily dealing with path
explosion, the results we present in this chapter show that our analysis approach can be used
to identify real vulnerabilities in enclave code. Furthermore, it allowed us to perform the
systematic analysis of enclave code and discover several vulnerability patterns common to
multiple enclaves. Enclave developers or security analysts can now avoid these vulnerability
patterns before deploying enclave code. Furthermore, our work on TeeRex inspired further
investigation into automatic analysis of SGX enclave code using fuzzing techniques that
scale better to larger enclaves [Clo+22].
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CHAPTER 5
FUZZING OF SMART CONTRACTS

Ethereum is the most prominent blockchain platform that supports smart contracts, i.e.,
programs that are stored and run as part of the blockchain protocol. Currently, smart
contracts form the backbone of the emerging decentralized finance (DeFi) industry. We
discuss the Ethereum execution environment in detail in Section 3.2.

Due to its widespread popularity, the security of Ethereum, particularly it’s smart con-
tract layer, has received considerable attention from the research community and industry.
Despite their popularity, current smart contract development practices and tooling still lag
significantly behind the state-of-the-art in software security. This became evident after a
series of high-profile attacks that targeted a number of popular smart contracts in Ethereum,
such as “the DAO” attack [Jen16], among others [PL21; Tor+21b; Zho+20].

Analyzing smart contract code is highly challenging due to the stateful nature of smart
contract code. Each smart contract exposes a certain set of functions that can be used to
interact with the smart contract in the form of atomic transactions. Most of these interactions
change the internal state of the contract, and software faults typically only manifest when the
smart contract is in a particular state. Automatically testing and analyzing stateful software
is generally a highly challenging problem (see Section 2.2). This is further exacerbated by
the fact that many smart contracts call into other smart contracts, which in turn can reenter
the originally called smart contract again. This is a form of deterministic concurrency attack
(see Section 2.1.2), which has as previously led to many high-profile vulnerabilities called as
reentrancy attacks [Jen16; Rod+19].

Previously, in Chapter 4, we explored symbolic execution as a technique to automatically
identify vulnerabilities in stateful software that exposes an API. However, we also discussed
several problems with symbolic execution, most importantly, the scalability issues when
analyzing sequences of API calls. This chapter presents a state-of-the-art fuzzing framework
for Ethereum smart contract called Extremely Fast Contract Fuzzer (EF�CF). We show that
in contrast to symbolic execution and prior Ethereum fuzzers, EF�CF scales better to long
and complex sequences of API calls. EF�CF faithfully handles complex interactions, such as
reentrant executions and cross-contract calls.

Contributions To summarize, the main contributions presented in this chapter are:
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• We devise a novel transpilation approach to accelerate the fuzzing of bytecode programs,
such as the EVM. Our approach removes the interpreter by directly translating bytecode
into equivalent C++ code and, finally, native code (Section 5.2). This allows us to
reuse high-speed native fuzzing components for coverage instrumentation.

• We design the first fuzzer that can efficiently and accurately generate complex reentrancy
attacks (Section 5.3). In contrast to prior analysis tools, we do not over-approximate
reentrancy attacks but generate and execute them directly. We do this by letting the
fuzzer choose the behavior of several simulated attacker smart contracts. The fuzzing
process explores the different behaviors of the attacker’s smart contracts, guided by
code coverage of the target smart contract. The result can be translated to a set of
attack contracts in the Solidity programming language.

• We thoroughly evaluate the performance of EF�CF against a large number of state-of-
the-art analysis tools. We show that our approach scales better to complex contracts
(Section 5.4) without hampering its effectiveness (accuracy and coverage) on other
non-complex contracts (Section 5.5). Furthermore, we show that EF�CF is capable of
accurately identifying even complex real-world compositional reentrancy issues, such
as the Uniswap/IMBTC incident (Section 5.5.2).

The topics discussed in this chapter have been previously presented in the following publica-
tion:
“EF/CF: A High Performance Fuzzer for Ethereum Smart Contracts”. IEEE European
Symposium on Security and Privacy (EuroS&P), 2023. Michael Rodler, David
Paaßen, Wenting Li, Lukas Bernhard, Thorsten Holz, Ghassan O. Karame, and Lucas Davi

5.1 Challenges of Automated Smart Contract Analysis
When fuzzing smart contracts, the goal is to identify a sequence of transactions that exposes
a fault in the smart contract. The final transaction of the sequence triggers a fault, while the
preceding transactions set up the state of the contract such that the fault can be triggered.
As such, testing Ethereum smart contracts represents a highly challenging problem: a
variant of testing stateful software [Ait02; CH00; KLT01; Thu+11; Xie+05]. In contrast
to static analysis methods, generating complete transaction sequences has the advantage
that it features a very low rate of false alarms. Furthermore, the result is easy to analyze:
a developer or security analyst can simply replay and debug the transaction sequence to
determine the root cause and assess whether the bug can be triggered in practice. However,
determining such a transaction sequence is challenging since the search space is extremely
large. There are two dimensions that must be explored in parallel to reach high code coverage:
(1) the input to individual transactions and (2) the ordering of the transactions. To efficiently
cover this large search space, we can exploit the fact that many of the possible transaction
sequences are redundant or simply pointless since they only exercise the same error-handling
paths repeatedly. Coverage-guided fuzzing can efficiently search the input space of a given
contract for inputs that trigger distinct code coverage, and was popularized by the success of
the American Fuzzy Lop (AFL) fuzzer [Zal] and many follow-up works [Fio+20; Man+21].

In this context, test case throughput emerges as an important design aspect for an effective
fuzzer. Intuitively, the greater the number of test cases generated/executed, the greater the
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Figure 5.1: Increasing trend in smart contract complexity over time. We measure the
complexity of all unique contracts with verified source code that appear in
Ethereum until April 27, 2022, and report the average metrics across all contracts
deployed.

likelihood that a fault will be triggered within a given time budget during fuzz testing, an
inherently probabilistic process. Most fuzz testing approaches for Ethereum smart contracts
develop new fuzzers from scratch [Gri+20; He+19; Ngu+20; Tor+21a]. In doing so, existing
smart contract fuzzers neglect years of engineering effort that has been invested by the
community into the development of fast fuzzing strategies of native code (typically C or
C++). For example, ILF performs at a rate of 148 transactions per second [He+19], while
native code fuzzing with far more complex code regularly achieves 10 000 or more test
case executions per second [Xu+17]. Due to their low throughput, current smart contract
fuzzers (1) cannot scale well when testing complex contracts and (2) cannot accurately
model complex interactions with attacker-controlled smart contracts. Next, we discuss these
limitations in greater detail.

Increasing Complexity of Smart Contracts Smart contracts are being used to implement
increasingly complex business processes. As a consequence, also the complexity of the smart
contracts according to various common complexity metrics is also increasing over time. Our
measurements of various complexity metrics for smart contracts as they evolved over time
are depicted in Figure 5.1. More specifically, we analyzed the source code of 120 556 unique
contracts, which were deployed to the main Ethereum blockchain until July 22, 2022. Note
that this also includes all the contracts from the smartbugs-wild dataset [Dur+20]. For each
contract, we measure the number of logical lines of code1, the number of state-changing
public functions2, the number of comparison operators, and the number of branches in the

1lloc is counted with github.com/XAMPPRocky/tokei.
2#func is counted as the number of ABIs with non-constant attribute.
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control flow of the smart contract bytecode3. Our analysis confirms the anecdotal increase
in smart contract complexity across all complexity metrics we analyzed. The complexity
problem is further increased by an increasing trend of smart contracts being composed into
systems of multiple interacting smart contracts. While we do not know of any measurements
of contract coupling of modern smart contracts, multiple real-world compositional security
vulnerabilities act as anecdotal evidence of this problem [Cec+21].

Multiple consecutive transactions are required to exercise all code paths while testing
the ever-increasing complex smart contracts. To reach all code paths, one needs to explore
the internal states of a smart contract. However, most prior studies are only limited to
rather short transaction sequences of length 3 [FAH20; KR18a; Nik+18] or do not assess
the ability to work with longer transaction sequences [Gri+20; He+19; Tor+21a; WC20].
Typically, more complex contracts also require longer transaction sequences to cover different
states of the contract during testing. To assess the ability of prior analysis tools to cope
with longer consecutive transaction sequences, we conducted an experiment with a set of
benchmark contracts with artificial bugs. Our experiment, detailed in Section 5.4, shows that
existing analysis tools are not sufficient to analyze more complex contracts. In particular,
current fuzzing-based analysis tools [Gri+20; Tor+21a] were unable to identify the bugs
that require a specifically ordered sequence of six or more transactions. While symbolic
execution tools [KR18a; Mos+19; Nik+18] are capable of producing such sequences even up
to ten transactions, they fail to identify faults that require accumulation of internal state
over multiple transactions. Apart from this, none of the analysis tools we tested can identify
all bugs within a generous time budget of 48 hours.

Support for Complex Smart Contract Interactions Another challenge that we need to
tackle is the frequent interaction of smart contracts with each other. To precisely model
such an interaction, whenever a smart contract calls another (potentially untrusted) smart
contract, we must assume that the target smart contract can be reentered at any function.
Such so-called reentrancy attacks have had devastating consequences in the past and even
required a hard fork of the Ethereum blockchain. To faithfully emulate the attacker’s
capabilities with respect to reentrancy, we must simulate the following scenarios: At each
call to an untrusted, potentially attacker-controlled contract, the target smart contract
can be reentered (1) at the same call depth multiple times, (2) at multiple functions, and
(3) by a call originating from a different smart contract. As such, accurately modeling an
attacker capable of performing these variants and combinations of reentrant transactions is
highly challenging. Current analysis tools mostly refrain from modeling arbitrary reentrant
transactions due to state explosion [Kal+18]; instead, most tools utilize over-approximative
detectors for reentrancy bugs (e.g., no state updates after calls [FGG19; Tor+21a; Tsa+18]).

To better illustrate the challenge, consider the example in Figure 5.2, which depicts a
token-like contract with standard transfer and allowance mechanisms that is vulnerable to
a reentrancy attack. If using the checks-effects-interactions code pattern [SolCEI] is not
possible, the second best alternative to prevent reentrancy attacks is to use locking mecha-
nisms [SolRe]. However, many analysis tools, such as Slither [FGG19], Securify [Tsa+18],
and Confuzzius [Tor+21a], do not handle locking mechanisms appropriately and simply
report a potential reentrancy issue in the withdrawBalance function, both due to the locking

3counted using the EtherSolve [Con+21] static analyzer
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mechanism and the balance update. In the example in Figure 5.2, the modifier with-
drawAllowed prevents an attacker from calling the withdrawBalance function in a reentrant
manner. This gives the developer a false sense of security, thinking that the userBalances
variables are protected by the locking mechanism and as such the contract must be secured
against reentrancy attacks. However, this only assumes that the attack follows the call
chain A1 → B → A1 → B. Since the attacker A1 has arbitrary control, they can transfer
control to a different colluding smart contract A2, which allows executing the call chain
A1 → B → A1 → A2 → B. As such, the second attacker contract A2 can call into the
transferFrom function to move away the balance of A1 before the call to withdrawBalance
finishes and resets the balance. With this attack, it is possible to bypass the reentrancy
locking mechanism and withdraw twice the balance that should be available to the attacker.
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1 contract Bank {
2 mapping(address => uint256) balance;
3 mapping(address => bool) disableWithdraw;
4 mapping(address => mapping(address => uint256)) allow;
5
6 modifier withdrawAllowed { // reentrancy locking
7 require(disableWithdraw[msg.sender] == false); _; }
8
9 function addAllowance(address other, uint256 amnt) public

10 { allow[msg.sender][other] += amnt; }
11
12 function transferFrom(address from, uint256 amnt) withdrawAllowed public {
13 require(balance[from] >= amnt);
14 require(allow[from][msg.sender] >= amnt);
15 balance[from] -= amnt;
16 allow[from][msg.sender] -= amnt;
17 balance[msg.sender] += amnt; }
18
19 function withdrawBalance() withdrawAllowed public {
20 // set lock
21 disableWithdraw[msg.sender] = true;
22 // reentrant calls possible here
23 msg.sender.call{value: balance[msg.sender]}("");
24 // release lock
25 disableWithdraw[msg.sender] = false;
26 balance[msg.sender] = 0; }
27 /* ... */
28 }

A1

A2

B.withdrawBalances()

B.addAllowance(A2, N)

A1

B.transferFrom(A1, N)

B.deposit()

A2

B.withdrawBalances()

Figure 5.2: A contract, B, with bypassable reentrancy-locking using multiple colluding
attacker-contracts (A1 and A2). The reentrant transaction sequence depicted
below the code listings exploits the shown contract, bypassing the reentrancy-
locking.
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5.2 Design of EF�CF
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Figure 5.3: Architecture of EF�CF. Blue boxes are newly developed or modified components.

The design of EF�CF is driven by two major features: optimizing test case throughput
and accurately modeling complex interactions with smart contracts. To achieve the former,
EF�CF uses two explicit phases, a compile and a run time phase (see Figure 5.3). At
compile time, the EVM bytecode of the smart contract is translated to C++ code with
our newly developed evm2cpp compiler and paired with a fuzzing-optimized EVM runtime,
facilitating fast smart contract execution. To accurately model interactions with smart
contracts, we devise an approach to allow the fuzzer to mutate the behavior of multiple
simulated attacker-controlled smart contracts. Each generated test case specifies a sequence
of transactions, which are executed by the fuzzing harness. However, in contrast to prior
work [FAH20; Gri+20; KR18a; Nik+18; Tor+21a], this transaction sequence also specifies
the behavior of callbacks to attacker accounts, including return values and further reentrant
transactions. To detect bugs, EF�CF features detectors that are directly built into the EVM
runtime and the fuzzing harness. Here EF�CF supports a commonly featured Ether-based
bug oracle that attempts to gain Ether, but also custom bug oracles that are specified by a
developer in Solidity code. In what follows, we discuss and explain our design choices in
more detail.

5.2.1 Modelling Blockchain Interaction
To faithfully model complex (possibly adversarial) interactions on the blockchain, we define
an input format for Ethereum transaction sequences that supports return data and reentrant
transactions. EF�CF runs the smart contract in a custom blockchain environment, which
contains several attacker-controlled accounts. A user of EF�CF can also supply a custom
initial blockchain state, e.g., to fuzz smart contracts which rely on other smart contracts
or expect to be deployed at a certain address. Given that smart contracts can depend on
various environmental data that is retrieved from the Ethereum blockchain, EF�CF allows
the fuzzer to choose and mutate these values at will. For example, the fuzzer chooses the
block number and timestamp at the beginning of the transaction sequence and is allowed to
advance both at every transaction. This enables us to handle smart contracts that expect a
certain timespan to pass between two consecutive transactions. Furthermore, the fuzzer can
increase the initial Ether balance of the target contract to simulate prior Ether investment
into the contract.
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The blockchain state is reset before every executed test case, which ensures that each
generated transaction sequence can be deterministically executed. This is necessary to obtain
reliable coverage measurements and eases root-cause analysis since the developer can reliably
replay a transaction sequence. In many cases, the transaction sequence can be directly
utilized as an end-to-end exploit against the deployed version of the contract.

Every test case in EF�CF consists of a header specifying the initial environment followed
by a sequence of transactions. Similar to regular Ethereum transactions, each transaction
consists of a sender, a receiver, a call value (i.e., transferred Ether), and associated input
data. However, for performance reasons, we restrict the senders and receivers to a small
set of accounts that are fixed when the fuzzer is launched. In a typical single-contract
fuzzing setup, the set of receivers will include only the target smart contract. EF�CF
simulates the behavior of arbitrary smart contracts at the attacker-controlled accounts. Each
transaction has additional associated data beyond what a regular Ethereum transaction
requires. This includes fields that specify what to do if the target smart contract calls back to
an attacker-controlled address. Each transaction can have multiple associated return-headers,
which specify (1) whether the call succeeded, (2) what data to return, (3) and how many
reentrant calls can be performed. The fuzzer is then free to choose arbitrary values for any
of these parameters. This allows the fuzzing process to explore a large variety of behaviors
of attacker-controlled smart contracts.

Reentrant Transactions As described in Section 5.1, it is also important that we model
complex interactions with the target smart contract, including reentrant transactions. Prior
dynamic analysis tools [JLC18; KR18a; Tor+21a] focused on generating lists of transactions
that trigger an exploit. However, to also model reentrant transactions, a simple list data
structure is not sufficient: every top-level transaction can have multiple associated reentrant
transactions of which every transaction can have again associated reentrant transactions
(see Figure 5.2 for an example). As such, the execution of a transaction spans a tree of
calls to other contracts. To let the fuzzer simulate the behavior of a reentrancy-capable
attacker, we need to model this call-tree in the input format for the fuzzer. Mutating the
tree structure allows the fuzzer to explore various shapes of the call-tree: reentering the same
function repeatedly, reentering the same function only once, reentering the same contract in
a different function, or reentering the same contract multiple times at the same call-depth.

However, in practice, not all shapes of the call-tree are possible. Some functions of a
contract allow for callbacks to the attacker, and therefore further reentrant transactions,
while others do not. In general, it is not possible to compute the shape of the call-tree in
advance. Whether an external call to an attacker is performed by the target smart contract
generally depends on the input and as such, cannot be determined before executing the
transaction.

Therefore, EF�CF’s fuzzing components operate on a list of transactions. However,
the fuzzing harness of EF�CF treats this list as a queue and dynamically builds a tree
of transactions, i.e., when an external call is encountered, it will reenter with the next
transaction in the queue. To mutate this ad-hoc tree structure, the fuzzer can mutate
a single field in the return header that specifies how many reentrant transactions can be
executed when an external call is encountered. The fuzzing harness ignores this field if the
transaction does not trigger an external call. For example, Figure 5.4 shows the mutation
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TX2
input: f2() 
reenter: 0

TX1
input: f1() 
reenter: 0

TX1

input: f1() 
reenter: 1

Mutate

input: f2() 
reenter: 0

TX3 input: f3() 
reenter: 0

TX2 input: f3() 
reenter: 0

TX1

input: f1() 
reenter: 2

Mutate

input: f2() 
reenter: 0

input: f3() 
reenter: 0

TX1

input: f1() 
reenter: 1

Mutate input: f2() 
reenter: 1

input: f3() 
reenter: 0

Figure 5.4: Mutating a flat transaction sequence to obtain reentrant transaction sequences
with different shapes. The fuzzer modifies the reenter flag associated with the
various transactions.

EF�CF performs to create reentrant transaction sequences. We start with a flat sequence
of three transactions that target the functions f1, f2, and f3. Both transactions have the
reenter flag set to 0, if the function f1 attempts to call back into the attacker, the call will
fail. The fuzzer then probabilistically mutates the reenter flag and sets it to 1 in the first
transaction. Now the same callback will not fail anymore but instead make the second
transaction a reentrant transaction. The third transaction remains a top-level transaction.
With this simple mutation, EF�CF has now generated a cross-function reentrancy attack.
By changing the reenter flag in different transactions EF�CF can generate different tree
shapes. Figure 5.4 shows two further mutations on this first mutated test case that results
in two distinctly shaped call trees.
Compositional Security Modern smart contracts are increasingly coupled with other smart
contracts. For example, token contracts are often tied to exchange contracts, where the token
can be traded for other tokens or Ether. Recently, several attacks have been reported that
were only possible due to composition of multiple smart contracts that were independently
developed [REVST; CREAM; Cec+21; Tor+21b]. For example, the Uniswap reentrancy
attack was only possible, because the first version of the Uniswap contract was combined
with a new type of token contract that would perform a callback to the attacker. The
Uniswap contract did not expect reentrancy to be possible on an external call and is indeed
safe when paired with most token contracts.

Compositional security is often associated with reentrancy, because the most prominent
examples of compositional security issues were also reentrancy attacks. However, composi-
tional attacks are not necessarily reentrancy attacks. Figure 5.5 shows four different attack
settings, where the last (sub-)transaction triggers a bug in contract V1. Figure 5.5a depicts
a flat sequence of transactions: two subsequent calls to contract V1. Figure 5.5b shows a
simple reentrancy attack, V1 call back into the attacker A, which performs a reentrant call
to V1. Figure 5.5c depicts a compositional attack, where a composition of two contracts is
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(c) Contract Composition.
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V2 V1

(d) Compositional Reentrancy.

Figure 5.5: Different settings illustrating the difference and similarities between reentrancy
and compositional attacks.

vulnerable. The DoS attack against the Parity Multisig Wallet is an example of such an
attack [Tec17a]. The bug can be triggered by setting up a vulnerable state and then forcing
V2 to call V1. Figure 5.5d depicts a compositional reentrancy attack, where the call from
V2 to V1 is a reentrant call. The Uniswap attack is an example of such a compositional
reentrancy bug [Cec+21].

EF�CF’s design also allows for testing compositions of smart contracts. First, EF�CF is
designed such that it can import parts of the blockchain state to set up a realistic environment
for the target smart contracts. For example, developers could test the security of their
deployed contract compositions by setting up their initial state on a local test chain and then
running EF�CF to detect potential issues. Second, EF�CF supports selecting the receiver of
a transaction, including reentrant transactions. As such, a developer or analyst just needs
to configure the set of contracts to be analyzed by EF�CF in composition.

5.2.2 Optimizing Test Case Throughput
Most state-of-the-art analysis tools [FAH20; Gri+20; KR18a; Mos+19; Nik+18; Tor+21a]
develop or utilize custom EVM implementations that offer the necessary introspection and
extension possibilities necessary to perform dynamic smart contract analysis. Similarly, as
part of our high throughput fuzzing framework, we develop an execution environment for
smart contracts that is optimized for the fuzzing use case. Here, test case throughput, i.e.,
both fast mutation/generation and fast execution, emerge as one of the most important
properties of a fuzzer to achieve good results in practice.

Translating EVM to C++ Most widely used Ethereum clients implement an interpreter
to execute EVM smart contracts. Typically, Ethereum nodes execute a large number of
different smart contracts throughout their operation; in this case, it suffices to rely on an
interpreter. However, in a fuzzing setting, the same smart contract is repeatedly executed.
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As a consequence, the overhead of the interpreter adds up over time and causes significant
overhead over longer fuzzing periods. To reduce the interpreter overhead, we develop a
custom translation layer from EVM bytecode to C++ and pair this with a customized
EVM runtime optimized for fuzzing. EF�CF’s compiler evm2cpp reduces this overhead by
translating the bytecode to optimized C++ code. Translating bytecode targeting a virtual
machine to C++ [Sch+16; il2cpp] or directly to native code [GRAAL; Wim+19] has been
previously applied in various academic and industry settings to speed up execution time. In
EF�CF, we apply this technique for the first time to EVM bytecode.

Note that a typical interpreter is implemented as a loop that fetches the next opcode and
dispatches to the corresponding opcode handler. In evm2cpp, we eliminate the overhead
incurred by the interpreter loop by mapping the EVM basic blocks directly to lexical C++

blocks. Within a basic block, the interpreter’s opcode handlers are invoked sequentially. This
avoids having to explicitly dispatch to each opcode handler for each instruction. Additionally,
we optimize each basic block by performing constant folding and eliminating EVM stack
operations to reduce memory accesses. The control-flow transfers between EVM basic blocks
are mapped to C++ goto statements. This leads to a native version of the smart contract
that can be further optimized by a standard compiler and fuzzing toolchain.
Optimizing the EVM runtime The smart contract that is translated to C++ still requires
an EVM runtime that implements the opcode handlers and interaction with the blockchain.
As such, we pair the C++ code generated by evm2cpp with an EVM runtime, which we
adapted and optimized from the eEVM project [eEVM]. We chose the eEVM project because
of its relatively simple codebase that can be easily extended and adapted for fuzzing. This
includes omitting or simplifying several features required by a full EVM implementation
operating as part of an Ethereum node. For example, our EVM runtime does not feature
instruction-accurate gas tracking. We do not need the gas mechanism to limit execution time
since it is limited per test case by the fuzzer. Detecting the majority of vulnerabilities, such
as access control or reentrancy, does not require instruction-accurate gas tracking. However,
checking the gas budget is necessary to accurately execute external calls.

Furthermore, we stop test case execution at the first failing transaction. Since the failing
transaction would be rolled-back, this has no effect on subsequent transaction executions.
Instead of performing roll-backs after every failing transaction, we stop the execution of
the current test case, reset the state of the Ethereum blockchain to its initial state, and
let the fuzzer generate a new test case. This approach nudges the fuzzer to generate
transaction sequences that only contain succeeding transactions. The only exception is
the last transaction in the sequence, which is allowed to explore error-handling paths.
Furthermore, this approach increases the effectiveness of test case splicing: when EF�CF
combines two previously generated test cases into one, it will very likely generate a new test
case containing only succeeding transactions.

Optimizing the Mutations At run time, the base fuzzer launches the target smart contract
with seed inputs, i.e., a seed with a single transaction without any input. The fuzzing process
is driven by a greybox fuzzing approach which involves mutating inputs, executing the fuzz
target, and measuring the code coverage to find new interesting transaction sequences. Note
that the base fuzzer is unaware of the structure that is inherent to the test cases, i.e., the
structure of the transaction sequence and the structure of the individual transaction inputs.
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As such, the base fuzzer’s mutation strategies are not efficient in mutating the structure of
the input. Hence, we augment the base fuzzer with a carefully engineered and optimized test
case generator and mutator that performs structure-aware mutations and generations. Our
custom mutator is called ethmutator and performs both (1) mutations on the transaction
inputs according to the smart contract’s ABI and (2) structural mutations on the transaction
sequence.

5.2.3 Bug Oracles
Prior work on smart contract fuzzing attempted to address two orthogonal problems at the
same time: triggering bugs and detecting bugs [Cho+21; He+19; JLC18; Ngu+20; Tor+21a].
Bug oracles are dynamic analyses that signal the fuzzer that a fault was triggered. In this
paper, we focus primarily on the aspect of triggering faults by developing a high throughput
fuzzer to identify the right input to trigger a fault. We opt to primarily use a simple—yet
powerful—bug oracle: Ether gains. This is in line with prior work on exploit generation for
smart contracts [FAH20; KR18a; Nik+18]. However, we also support custom bug oracles
defined in Solidity code by the smart contract developer to cover contract-specific bug classes.

EF�CF defines an attack to satisfy one of the following conditions: (a) the attacker is able
to trigger a selfdestruct to an arbitrary address, thereby allowing the attacker to drain the
funds of the contract and create a Denial-of-Service scenario, (b) the attacker can redirect
the control flow to an arbitrary address (using the DELEGATECALL instruction), which would
give the attacker control over the target’s Ether, and (c) the attacker is able to gain Ether
by interacting with the contract, i.e., the sum of the balances of the attacker-controlled
contracts must exceed the initial sum of balances of these contracts. In contrast to other
bug oracles, this approach avoids a high number of false alarms by design. For example,
accurately detecting integer overflows [FSS18] or reentrancy [Rod+19] without high-level
type information is highly challenging. However, it is comparably straightforward to detect
if a fuzzer generates a transaction sequence exploiting an integer overflow or reentrancy
to gain Ether. Interestingly, we found that this type of bug oracle is also more accurate
than bug oracles implemented in other analysis tools. For example, the contract depicted in
Figure 5.6 is not identified as vulnerable by neither of two state-of-the-art hybrid fuzzers,
Confuzzius [Tor+21a] and Smartian [Cho+21]. On the other hand, EF�CF’s Ether-gains
bug oracle turns out to cover more cases such as this example.

However, an Ether-based bug oracle often does not capture the semantics of some smart
contract applications, such as token contracts. As such, we also implemented support for
custom invariant checking or assertion checking. This approach is also used in commercially
used fuzzers [Gri+20; Conc]. This allows smart contract developers to manually specify
invariants that the fuzzer tries to invalidate.
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1 contract SimpleEtherDrainOther {
2 function withdraw(address payable to) public {
3 require(msg.sender != to);
4 to.transfer(address(this).balance);
5 }
6 function deposit() public payable {} }

Figure 5.6: Contract that is not considered as vulnerable by the leaking Ether bug oracles of
Confuzzius [Tor+21a] and Smartian [Cho+21], but detected by EF�CF’s Ether
gain bug oracle.

5.3 Implementation Details of EF�CF
We now present the description of our prototype implementation of EF�CF.

5.3.1 EVM to C++ Translation
The evm2cpp component is a custom compiler that translates EVM bytecode to C++ function
calls, implemented in roughly 2500 lines of Rust code. First, we perform a linear pass over
the EVM bytecode to build the set of all basic blocks. We use the fact that in EVM bytecode,
all jump destinations are marked with JUMPDEST instructions. As such, we can efficiently
identify the boundaries of a basic block by looking for branching instructions and jump
destination markers. However, we do not construct a full CFG, as this would require complex
and error-prone analysis since all jumps in the EVM are indirect jumps. Instead, to keep
the required analysis feasible, we perform local analysis and optimization at the EVM basic
block level. We emulate basic blocks in isolation using abstract values as placeholders for
non-constants to perform data-flow analysis and constant propagation concerning the EVM
stack. Note that, in contrast to abstract interpretation, we stop emulation at the end of a
basic block and, as such, do not need to handle control-flow instructions.

The code generation procedure translates each EVM basic block to a C++ lexical block.
If we can infer the jump target at the end of a basic block with our constant propagation,
we directly emit a goto statement to the target C++ lexical block. Otherwise, we have to fall
back to using a large jump table via the computed goto feature to efficiently dispatch to
the next basic block at runtime. In both cases, the C++ gotos are translated into a jump
instruction by the C++ compiler, which is then instrumented by the coverage-instrumentation
pass of the fuzzer. Effectively, this also provides edge-coverage information without the need
for explicit instrumentation of the EVM code, which further improves the performance.

Within a basic block, each opcode is translated to a call to the respective opcode handler
function in the EVM runtime. However, we do not use the EVM stack within basic blocks.
Instead, we translate the stack-based EVM opcodes into a lightweight register-based form,
where each register is translated to a C++ local variable, and no register is reused. This
is similar to the single-static assignment form, albeit without the need for PHI nodes. At
the beginning and the end of each translated basic block, we ensure that the stack effects
of the register-based form and the original EVM opcodes are the same. Essentially, we use
the EVM stack only to pass parameters between translated basic blocks. This enables us to
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1 JUMPDEST
2 CALLVALUE
3 DUP1
4 ISZERO
5 PUSH2 0x66
6 JUMPI

1 pc_5a : { /* JUMPDEST */
2 /* CALLVALUE */
3 const uint256_t v_1_0 = callvalue_v();
4 /* DUP1; ISZERO */
5 const uint256_t v_3_0 = iszero_v(v_1_0);
6 /* PUSH2 0x66; JUMPI */
7 if (v_3_0) {
8 ctxt->s.push(v_1_0);
9 goto pc_66;

10 }
11 ctxt->s.push(v_1_0);
12 goto pc_62; // fallthrough branch
13 }

Figure 5.7: Example for a basic block starting at address 0x5a and translated to C++ by
evm2cpp. The original EVM basic block is on the left and the translated basic
block in C++ annotated with the respective EVM instructions is depicted on the
right. Some stack-related opcodes have no direct counterpart in the emitted C++

code. For example, the DUP1 instruction has been eliminated during translation.

eliminate a number of costly EVM stack operations. Furthermore, we emit C++ code that
can be well optimized by recent clang versions (we tested clang ≥ 13).

Figure 5.7 shows an example of a translated basic block. Here, the DUP1 opcode is
eliminated, which duplicates a value on the EVM stack. Furthermore, we eliminate the
PUSH2 instruction, which pushes a constant to the stack. Owing to the constant propagation
pass we perform, we can infer that this constant is used as a jump target later. Instead of
dispatching the jump via the EVM stack, we emit a goto statement that directly targets
the desired block. Before the jump, we fix up the EVM stack effects of the basic block by
pushing the right values to the stack. With respect to the EVM stack, the original bytecode
performs three pushes, two pops, and one replacement of the top element. In contrast, the
generated C++ code uses only a single stack push.
EVM-level Auto-dictionary To increase fuzzing efficiency, many fuzzers scan the code for
constants and create a dictionary of potentially interesting values (e.g., file format header
magic values). However, they typically scan for up to 64 bit constants or null-terminated
C strings and thus do not properly handle the 256 bit EVM words or 160 bit Ethereum
addresses. Hence, we generate a dictionary of values based on the constants discovered
during the constant propagation pass. This includes computed quasi-constants that are often
found in EVM bytecode.

Dynamic Contract Creation Currently, EF�CF does not support fuzzing contracts that
create other contracts at runtime, as EF�CF would have to execute previously unknown
EVM bytecode, which is not possible in the current ahead-of-time compilation model. When
EF�CF encounters an instruction that creates a new contract, EF�CF will stop executing the
current transaction sequence. However, we only encountered a single contract that created a
new contract at runtime during our evaluation. As such, we believe these to be sufficiently
rare cases. There are multiple options to handle dynamic contract creation. Currently, the
ahead-of-time executed code is separated from the interpreter. However, since both use the
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same data structure to store EVM state, one could seamlessly switch between interpretation
and compiled smart contract code. This would reduce fuzzing throughput but would allow
EF�CF to handle dynamic contract creation. If the constructor code of the contract is known,
it can also be translated with evm2cpp, allowing the fuzzer to execute constructor code
at high throughput. Alternatively, one could switch to a cached just-in-time compilation
model of the EVM bytecode instead of using ahead-of-time compilation. However, both
with just-in-time and ahead-of-time compilation, one needs to handle the fact that some
contracts change constants within the constructor code before executing it, which hampers
efficient caching of translated code.

5.3.2 Fuzzing Harness
We opted for a lightweight EVM implementation as the base for our fuzzing-optimized
EVM runtime. To this end, we adapted the open-source eEVM project [eEVM] such that it
fits the code-generation of evm2cpp and added an implementation of several newer EVM
opcodes, missing features, and various minor fixes. Furthermore, we replaced the usage of
C++ exceptions with return values in hot code paths that deal with exceptions thrown by
the smart contract code. This results in considerably better performance since fuzzing tends
to frequently exercise the error handling paths of the smart contract code. We also switch
to a more optimized hashmap implementation [Pop19] and use mimalloc [LZM19] as the
default allocator.

Input Format Within the eEVM project, we created a standard libfuzzer-compatible fuzzing
harness. The bug oracles are directly integrated into the fuzzing harness and runtime support
code of the eEVM project. The fuzzing harness features a parser for a custom input format
we developed. This format can be quickly parsed without ever failing, i.e., any unneeded data
is discarded by the harness; for any missing data fields, default values are assumed. This
robust parsing approach allows the use of standard bit-flipping mutations [Fio+20] that are
unaware of the input structure. The input format consists of an initial header defining the
initial environment, followed by a sequence of transactions. Each transaction is represented
as a header and a field that specifies the length of the transaction input. Mutating the
header for a transaction allows the fuzzer to select transaction-specific parameters, such as
the sender account, the call value, and the number of allowed reentrant transactions. For the
input data, the parser simply consumes bytes from the fuzzer-provided data according to the
length specified in the header until the end of the fuzzer-provided data. Figure 5.8 shows an
example for a test case generated by EF�CF to exploit the contract depicted in Figure 5.2.
We designed the input format to enable high throughput fuzzing while being expressive
enough to model complex smart contract interactions. Furthermore, we use the input format
as a template to synthesize Solidity attack smart contracts that exploit the target. For each
attacker-controlled account, we synthesize a Solidity contract that implements the behavior
as specified by the generated test case. Note that we perform a straightforward translation
here, which means that the synthesized contracts do not react to the victim contract, but
simply perform the calls as they are specified in the test case. The composition of attack
contracts implements one big state machine, with a central attack contract as an entry point
that synchronizes the state of all attack contracts.
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1 number: 0
2 difficulty: 0
3 gas_limit: 0
4 timestamp: 0
5 initial_ether: 14000000000000000000
6 txs:
7 - sender_select: 1
8 call_value: 9227875636482146304
9 input: "0xd0e30db0" # deposit()

10 returns: []
11 - sender_select: 1
12 call_value: 0
13 input: "0x5fd8c710" # withdrawBalance()
14 returns:
15 - value: 1
16 reenter: 2
17 data_length: 0
18 data: "0x"
19 - sender_select: 1
20 call_value: 0
21 # addAllowance(0xc3cf2af7ea37d6d9d0a23bdf84c71e8c099d03c2,
22 # 1117873197643827594651545771110674982630890210242)
23 input: "0xf3c40c4b0000000...."
24 returns: []
25 - sender_select: 2
26 call_value: 0
27 # transferFrom(0xc2018c3f08417e77b94fb541fed2bf1e09093edd,
28 # 295147905179352825856)
29 input: "0x01c6adc30000000...."
30 returns: []
31 - sender_select: 2
32 call_value: 0
33 input: "0x5fd8c710" # withdrawBalance()
34 returns:
35 - value: 1
36 reenter: 0
37 data_length: 0
38 data: "0x"

Figure 5.8: Textual representation of the transaction sequence generated by EF�CF to exploit
the contract from Figure 5.2 (some fields omitted and simplified.
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Fuzzer and Harness Integration While the fuzzing harness itself is mostly oblivious to
the used fuzzer, we opted to rely on AFL++ [Fio+20] as one of the most advanced general-
purpose fuzzers. AFL++ supports various modern fuzzing techniques, such as collision-free
coverage bitmaps, a Redqueen [Asc+19b] implementation called cmplog to bypass fuzzing
roadblocks, and support for custom mutators. Due to our transpilation approach, we are able
to directly leverage the instrumentation of AFL++ for smart contract code. We built the
fuzzing harness with clang, with the highest optimization setting and link-time optimization
(LTO) enabled, instrumenting the harness with AFL++’s LTO-based collision-free code
coverage instrumentation. Since we have translated the EVM bytecode to C++ code, we can
utilize AFL++’s coverage instrumentation to instrument the combination of the harness
and all the transpiled smart contracts.

However, we noticed several issues when using AFL++, most importantly regarding the
implementation of the Redqueen mutations [Asc+19b]. The problem is that by default, the
optimized big integer library used by eEVM uses branchless code when comparing the four
64 bit words that make up a single 256 bit value. As a result, AFL++’s cmplog cannot detect
when only one of the four words matches, as no new code coverage can be observed. As a
consequence, it fails to incrementally solve comparisons with large constants. However, this
issue is only relevant for bypassing comparisons and not during other arithmetic operations.
As such, we opted to manually adapt the relevant functions to provide explicit coverage
feedback to AFL++. This optimization allows AFL++’s cmplog to solve a considerable
amount of fuzzing roadblocks due to integer comparisons. To further increase fuzzing
efficiency when applying structural mutations in the custom mutator, we added a lightweight
tracing mode for certain opcodes (comparisons and returns) to the codebase. This enables
us to identify quasi-constants and add them to the dictionary of our mutator at runtime.

When fuzzing for reentrancy attacks, we found it beneficial to notify the fuzzer about the
call depth of the current execution. To this end, we introduce call-depth-sensitive coverage
reporting in the fuzzing harness. Whenever a new basic block is executed, we record the
current call depth in AFL++’s coverage map. This allows AFL++ to distinguish executions
of the same contract at different call depths. Since AFL++ receives a new coverage signal
when a transaction is executed in a reentrant manner, the test case will be stored in the
queue. In turn, this increases the probability of finding reentrancy attacks.
Multi Target Selection We have also implemented an experimental multi-target mode
in the fuzzing harness, which allows EF�CF to fuzz multiple contracts at once. This is
useful in case there are mutual interdependencies between two contracts. Essentially, for
each transaction, we allow the fuzzer to choose the target smart contract out of a list
of contracts, producing a transaction list that alternates between calling different target
contracts. However, we have not implemented support for multiple ABIs in the custom
mutator. As a workaround, we concatenate the ABIs of all involved contracts. Nevertheless,
the fuzzing efficiency of this mode is not as good as with full support in the custom mutator.
We leave optimizing the custom mutator for multi-target ABI-based fuzzing as future work.
While some known attacks require such a mode, the vast majority of known vulnerabilities
do not fall into this category.
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5.3.3 Custom Mutator
We implemented a mutator library, called ethmutator, in roughly 10 kloc of Rust to efficiently
generate and mutate: (1) the structured transaction input expected by the smart contract
code, and (2) the transaction sequence input format parsed by the fuzzing harness. The
mutator library features a parser and emitter for the binary input format accepted by the
harness code. Based on this library, we implement several related tools, such as a structured
test case minimizer and an AFL++ custom mutator. The mutator is carefully engineered
with high performance in mind. We reduce the number of required allocations and copy
operations by applying copy-on-write semantics while performing mutations on a transaction
sequence. We also use mimalloc [LZM19] in the custom mutator, as this increases the
performance of the mutator by a factor of four.

In Ethereum, a transaction is associated with an input field, which is simply a variable-
length byte string. Smart contracts use a de-facto standardized ABI format, which specifies
how function calls with parameters of complex types are encoded. To enhance the efficiency,
we use the ABI information in the ethmutator to perform mutations according to the ABI.
Unlike existing general-purpose fuzzers, our custom mutator can handle the complexity of the
ABI format by acting as a grammar fuzzer for the given ABI and generating structurally-valid
inputs based on the ABI. When choosing the values for primitive types, we rely on a fuzzing
dictionary built into the custom mutator. Recall that this dictionary is seeded with the
constants that are discovered during the analysis pass of evm2cpp. In addition, we extend
the dictionary with “interesting” values that are likely to trigger bugs (e.g., the dictionary
contains the maximum value for every integer type supported by Solidity to make it more
likely to trigger integer overflows). When no ABI is available, we exploit the fact that
ABI-encoded data is always similarly structured for efficient mutations. For example, when
appending a new transaction, we first select a 4 byte constant from the dictionary as a prefix
for the input. Since the basic unit of the ABI is a 256 bit EVM word, most of the input
mutations operate on this word size if no ABI is available.

The second main task of the custom mutator is to apply structured mutations to the
transaction sequence. We implemented several basic structured mutations, such as adding,
duplicating, or dropping transactions. Furthermore, we implemented more involved mutators,
such as structural test case splicing or value propagation between transactions in a sequence.
Whenever the base fuzzer adds a test case to its queue, the custom mutator parses this
test case and keeps the transaction sequence in memory. The structured splicing mutation
then replaces a randomly selected transaction sub-sequence with a sub-sequence obtained
from a previous test case. The intuition here is that transaction sequences from prior test
cases contain valid transaction combinations. Combining two valid transaction sequences
is more likely to result in a new valid transaction sequence. We also propagate values
from earlier transactions to later transactions. Hence, with some probability, values in the
transaction input will be replaced with values that occurred as parameters in the input of
earlier transactions. Similarly, we set the value of address types in the ABI to the address of
attacker-controlled accounts that previously already sent a transaction. Similar to AFL [Zal],
the custom mutator has multiple stages and a fixed set of mutations applied to every test
case. Subsequently, random mutations are applied (i.e., similar to the havoc phase in AFL).
Finally, the custom mutator also uses stacked mutations, where different random mutation
operations are combined.
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En/Decoding the ABI We use the ethabi Rust library to parse the JSON-based ABI
definition, which allows us to en- and decode the ABI format expected by the smart contract.
Sometimes the base fuzzer will break the ABI encoding, which results in the custom mutator
attempting to decode extremely large input data. In fact, during the development of
EF�CF, we uncovered and fixed two bugs in the ethabi library, s.t., it would not panic when
attempting to decode broken ABI-encoded data. However, we still set an 8 kbyte limit to
the number of bytes we attempt to decode. This prevents EF�CF from spending too much
time attempting to decode an unusually large input byte-string of a transaction. Since it is
unlikely a valid or useful input for the smart contract under test, it is preferable to avoid the
lengthy decoding process altogether. In these pathological cases, we fall back to the random
mutations provided by the base fuzzer.

AFL++ Integration We patched AFL++ for optimal integration with our custom mutator.
Our patches make AFL++ report an internal performance score to our custom mutator.
The custom mutator can then adapt this score to select the number of fuzzing rounds for a
given test case. Depending on the size and complexity of the test case, we apply different
types of mutations and a different number of fuzzing rounds in the custom mutator.

We ensure that AFL++ extensively uses the structured trimming provided by our custom
mutator. We found that structured trimming is beneficial to the fuzzing process in EF�CF.
Additionally, we also utilize the trimming step of AFL++ to update the internal test case
queue of our custom mutator. This allows us to only add test cases to the internal queue,
which are trimmed. In contrast to AFL++’s queue, we keep the internal queue completely
in memory and use it for efficient structural splicing operations.

We also extend AFL++ with an additional manual feedback API with a function that
allows reserving a larger part of the AFL++’s coverage map for direct feedback. This is used
by our modifications to the eEVM runtime to provide explicit feedback on two properties
of the execution. First, we provide explicit feedback on the progress of solving comparison
operators. For example, for the EQ opcode, we provide explicit coverage feedback to AFL++
for every 64 bit part of the 256 bit EVM-native integer that is equal. This allows AFL++’s
cmplog mode, which implements input-to-state correspondence on the 64 bit comparison
level, to effectively solve fuzzing roadblocks on EVM-native 256 bit level. Similarly, we
provide explicit coverage feedback to AFL++ whenever a contract executes in a reentrant
call. This allows the fuzzer to distinguish a reentrant execution from a normal execution, i.e.,
a simple form of context-sensitive coverage. We found this beneficial for AFL++ to keep
both reentrant and non-reentrant variants of the same transaction sequence in the queue.

When launching AFL++, we disable the byte-level auto-dict feature since it is superseded
by our replacement acting on the EVM bytecode level. Re-implementing the auto-dict
feature in evm2cpp results in significantly smaller and more useful dictionaries than relying
on AFL++’s auto-dict mode, which scans the final binary for constants and also picks up
irrelevant data, such as strings internal to the eEVM runtime.

Multi-Core Fuzzing While AFL++ has a single-threaded design, it is capable of synchro-
nizing with other instances of AFL++ (and even other fuzzers) via the filesystem. EF�CF
inherits the same technique, and the wrapper scripts we provide as part of EF�CF can
automatically launch multiple AFL++ instances. Generally, it is recommended to launch
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AFL++ using multiple different configurations when using multiple cores [Fio+20]. We
adapt these recommendations to EF�CF. When running on four or more cores, we launch
the following configurations:

1. A main instance with AFL++’s deterministic mutation stages enabled.

2. A compare solver instance, with input-to-state [Asc+19b] and EVM-level compare
tracing enabled.

3. One instance fuzzes only with the custom mutator.

4. The remaining cores utilize AFL++’s lightweight havoc mutations and our custom
mutator.

Other Bug Oracles The standard bug oracles are implemented inside of the eEVM runtime
code. To implement a new bug oracle, one has to modify the C++ implementation of the
runtime code. For performance reasons, EF�CF does not rely on heavyweight program
analysis techniques such as taint tracking to implement bug oracles. As such, the bug
oracles in EF�CF are limited to detecting bugs based on the state of the simulated Ethereum
blockchain. However, we believe that the existing bug oracles supported by EF�CF already
cover a large set of use cases. Furthermore, developers can use custom properties or the
event mechanism to implement custom bug oracles directly in Solidity code.

Currently, EF�CF supports optional fuzzing modes, which are also used by industry
fuzzers such as Echidna [Gri+20] or Mythril [Conc; WC20]. For example, EF�CF supports
property-based fuzzing with an interface that is fully compatible with the Echidna fuzzer.
The developer specifies a property of the contract that must always hold, i.e., an invariant of
the contract code. Such properties are specified as a Solidity function that returns whether
the property is currently true or false. After every executed transaction, EF�CF calls the
configured property functions and checks whether the return value signals a violated property.
Similarly, EF�CF can utilize the EVM event logging and error propagation mechanisms
to detect bugs. The smart contract developer emits a certain event whenever a bug is
triggered. Whenever this event is logged during fuzzing, EF�CF will consider the execution
to trigger a bug and report it. Similarly, Solidity versions 0.8 or above report special error
messages to the caller whenever an assertion is violated or an integer overflow happens. If
configured, EF�CF picks up these special error message return codes as a bug and reports it.
This way, EF�CF can be utilized to fuzz for more than Ether-based bugs and also uncover
contract-specific logic bugs.

Comparison of Bug Oracles Previous analysis tools often implement a wide variety of
bug oracles [Cho+21; Luu+16; Nik+18; Tor+21a] to detect security vulnerabilities, code
smells, and other potentially interesting properties of the code. However, the definition of
bug oracles and what oracles should be considered as a security vulnerability differ across
the literature. We identify the unprotected selfdestruct bug oracles as one of the few oracles
that are recognized in almost all analysis tools. As such, we utilize this bug oracle in our
benchmarks (see Section 5.4). In EF�CF, we focus on Ether gains as our primary bug oracle,
as it features the least number of false alarms in practice. However, this single bug oracle in
EF�CF actually maps to multiple bug oracles in other tools. Furthermore, we implement
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several additional optional bug oracles that can be used in EF�CF. We show a comparison
of supported bug oracles in Table 5.1. In the following, we discuss some of the bug oracles
in more detail.

Locking Ether is fundamentally a liveness property. In general, liveness properties are
hard to show with a fuzzer. A standard fuzzing approach can only show that a certain
code path can be reached. However, to accurately report locked Ether, the fuzzer would
have to show that a certain code path cannot be reached. For this reason, many fuzzers
actually implement a static analysis approach to detecting locked Ether. For example,
ILF [He+19] and Confuzzius [Tor+21a] simply scan the contract for any instruction that
can—in theory—send Ether. However, they do not verify that this instruction can be actually
executed, i.e., the instruction could be inside of dead code. As such, this approach will only
detect simple cases of locked Ether.

Leaking Ether and Ether Gains are two very related bug oracles. Both attempt to identify
bugs where the contract can be used to send Ether to some unrelated address. EF�CF
supports detecting leaking Ether but disables the bug oracle by default. The idea is that the
attacker can trick the contract into sending Ether to some contract that has no previous
relationship with the contract. However, many contracts support transferring Ether indirectly
to another address as a feature. For example, all token contracts must support transferring
tokens to arbitrary addresses as a feature. In contrast, EF�CF uses Ether gains as a bug
oracle that covers more realistic cases. EF�CF will report an Ether gain bug whenever
the sum of the Ether balances of all attacker-controlled accounts exceeds the initial sum
of balances. This allows EF�CF a wider and more realistic set of issues. For example,
the vulnerability depicted in Figure 5.6 is neither detected by Confuzzius [Tor+21a] nor
Smartian [Cho+21]. However, since EF�CF simulates multiple attacker-controlled accounts,
it will quickly generate a transaction originating from the first account and leaking the Ether
to a second attacker-controlled address.

Most analysis tools feature explicit Reentrancy bug oracles. In contrast, EF�CF does
not feature an explicit detector for reentrancy but simply generates reentrant transaction
sequences that trigger other bug oracles, such as Ether gains. As such, EF�CF detects
reentrancy bugs, but only if they are actually exploitable. In contrast to other analysis tools,
this leads to fewer false alarms, e.g., when encountering manual reentrancy locking [Rod+19].

By default, EF�CF reports unprotected selfdestruct only if the self-destruct will transfer
the remaining Ether of the target contract to the attacker, i.e., the address parameter of
the self-destruct is controlled by the attacker. Optionally, EF�CF can also report DoS-style
unprotected self-destructs, i.e., if the self-destruct can be triggered by anyone but always
targets a trusted address such as the owner. This style of detection is featured in most other
analysis tools.

With Solidity version 0.8, contracts feature automatic integer overflow checking and
proper assertion violation reporting. EF�CF supports this new Solidity exception mechanism
to signal errors to the fuzzer. Previously, assert statements were implemented with the
INVALID opcode that also triggers a transaction revert. However, earlier contracts (pre
0.4) also used this to implement the failure of input sanitization. As such, it is hard to
reliably distinguish between a regularly failing transaction and an assertion violation across
solidity versions. We expect developers to use the newer Solidity versions for newly deployed
contracts. As such, we opted to support only the new Solidity exception mechanism, which
allows us to reliably detect internal errors in a smart contract. This includes memory
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allocation failure, integer overflows, and internal assertions. Developers can utilize EF�CF
for general robustness testing of their newly deployed smart contracts.

Table 5.1: Comparison of bug oracles in various analysis tools with the bug oracles available
in EF�CF. ✓ fully supported. × not supported. ✓∗ supported but not enabled
by default. ✓† only supported for contract compiled with Solidity version > 0.8.
×‡ only if it leads to triggering another bug oracle.

Bug Name EF�CF Confuzzius [Tor+21a] Smartian [Cho+21] Echidna [Gri+20]

Assertion Failure ✓† ✓ ✓ ✓∗

Arbitrary Write ×‡ × ✓ ×‡

Block State Dependency ×‡ ✓ ✓ ×‡

Control-flow Hijack (JUMP) ×‡ × ✓ ×‡

Custom Event Oracle ✓∗ × × ✓∗

Custom Property Checking ✓∗ × × ✓∗

Ether Gains ✓ × × ×
Integer Overflow ×‡/ ✓† ✓ ✓ ×‡

Leaking Ether ✓∗ ✓ ✓ ×
Locking Ether × ✓ ✓ ×
Multiple Send × × ✓ ×
Reentrancy ×‡ ✓ ✓ ×
Require Violation × × ✓∗ ×
Transaction Origin Use ×‡ × ✓ ×‡

Transaction Order Dependency × ✓ × ×
Unsafe Delegatecall ✓ ✓ ✓ ×
Unprotected Selfdestruct ✓∗ ✓ ✓ ✓∗

Un/Mishandled Exception ×‡ ✓ ✓ ×

Additional Tooling Based on our custom mutator code, we additionally implemented
several tools that proved to be useful for smart contract fuzzing. For instance, EF�CF also
features a test case minimizer that performs structural minimization on a test case, allowing
an analyst to reduce the size of a test case. Furthermore, EF�CF integrates a translator
between our binary test case format to a human-readable equivalent yaml-based format,
allowing for easy manual modification of test cases. EF�CF can also convert a test case into
a Solidity attack contract that can be deployed within a blockchain environment to study
the generated attack. These tools help an analyst in performing root cause analysis given a
test case that triggers a bug.

5.4 Performance Evaluation
In this section, we evaluate various performance aspects of EF�CF and compare EF�CF
to the current state-of-the-art in fuzzing and symbolic execution. We evaluate EF�CF
concerning scalability to longer transaction sequences, the test case throughput, scalability
to multiple cores, and achieved code coverage. We also perform an ablation study that shows
how the various components of EF�CF improve the performance of the overall fuzzer.
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Figure 5.9: Scalability experiment using the synthesized multi contract variant that are
scaled according to the number of required transactions.

5.4.1 Scalability Benchmarks
We start with an evaluation of the effectiveness of analysis tools in dealing with an increasing
length of transaction sequences. To this end, we created a benchmark consisting of three
types of contracts (multi, complex, and justlen), which model different code structures and
roadblocks (that hinder analysis) typically found in smart contracts. For each type of
contract, we devise several variants (9 for multi, 3 for complex, and 4 for justlen) that require
an increasing number of transactions to reach an exploitable state plus another transaction
to trigger a vulnerability (see Table 5.2 for a summary). Each variant of multi and complex
contracts is parameterized given the number of transactions that are needed to trigger the
bug. For instance, contract multi10 requires 10 transactions (or sequential function calls) to
reach an exploitable state. Here, we chose to insert a vulnerability in a function that simply
triggers selfdestruct of the contract when the exploitable state is reached. This type of bug
is widely supported by analysis tools and allows us to compare various tools according to
the analysis time required to identify the bug.

The multi contracts are synthesized as follows: for each function, several equality or
in-equality constraints are enforced on up to six integer arguments before setting a boolean
internal state variable. As such, these benchmark contracts test the capability of solving
input constraints across multiple transactions. The functions of the contract must be called
in the right order, with the right inputs, to trigger a selfdestruct of the contract. Note
that these contracts favor symbolic execution tools, given that they do not contain any
control-flow statements except for error handling. As such, there is no potential for path
explosion within the functions. The three complex contracts consist of a manual adaptation
of the multi contracts with more varying constraints on the input and the internal state
of the smart contract (e.g., requiring an array input of a certain length or requiring the
sha3 hash of a fixed value as input). Finally, the justlen example is adapted from Groce
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Figure 5.10: Scalability experiment using the manually created complex contract variant,
scaled according to the number of required transactions.

et al. [GG21] and is parameterized over the length of an array that must be reached using
push, pop, double, and halve operations.

We run the tools tEther [KR18a], MAIAN [Nik+18], EthBMC [FAH20], Manticore [Mos+19],
Confuzzius [Tor+21a], and Echidna [Gri+20; GG21] using this setup and measure the time
until the bug is discovered with a global timeout of 48 h. We run all analysis tools within
Docker containers on an Intel Xeon Gold 6230 CPU clocked at 2.10 GHz with 188 Gbyte
RAM. Due to time constraints, we run the tools in parallel, keeping all physical CPU
cores fully occupied. We do not utilize hyperthreaded cores, as they are detrimental to
CPU-bound tasks such as fuzzing. By default, all tools were executed on a single core. We
additionally ran those tools that support multi-core analysis (EF�CF and Manticore) on
4 cores concurrently. To run this experiment, we had to patch the tools tEther [KR18a],
MAIAN [Nik+18], and ConFuzzius [Tor+21a] such that they support longer transaction
sequences. We excluded EthBMC [FAH20] from most of our experiments since we were
not able to identify the bug in EthBMC, which causes it to not report any vulnerabilities
with transaction sequences longer than 3. Moreover, we excluded ILF [He+19] because a
machine learning-based fuzzer is very unlikely to produce the 256 bit magic value constants
required for the synthesized contracts. When possible, we bound the number of transactions
to consider by 32 for all tools in order to ensure that they execute at a reasonable pace
while leaving enough room for failing/duplicated transactions within sequences. We run all
Python-based tools with CPython and the PyPy JIT-compiler. We report the numbers with
PyPy for MAIAN and teEther, where we observed a speed-up. We perform 3 trials for all
symbolic execution tools (where randomness does not play a big role) and at least 10 trials
for all fuzzers. In total, we spent approximately 970 days of CPU time for this experiment.

Our results are summarized in Table 5.2. EF�CF is the only analysis tool capable of
solving all of the contracts in this benchmark dataset. Figure 5.9 shows the log-scaled time
required to solve the multi contracts with an increasing number of required transactions.
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Figure 5.11: Scalability experiment using the justlen contract by Groce et al. [GG21], scaled
according to the length of the array that must be created using push, pop, halve
and double operations.

We omit those tools/results from the plots where all runs fail to identify a bug. Only three
of the tools scale reasonably to a larger number of transactions: Manticore, EF�CF, and
MAIAN. Surprisingly, MAIAN performs best in this benchmark and seems to scale very well.
Manticore scales in a similar manner as EF�CF, except for the longest transaction sequence,
where Manticore fails to identify the vulnerability. Surprisingly, Confuzzius, using hybrid
fuzzing and concolic execution, performs worse than most pure symbolic execution-based
tools on this benchmark. Similarly, the fuzzer Echidna does not perform well on the multi
and complex contracts—highlighting the limitations of Echidna in solving complex input
constraints on multiple transactions.

Notice that most analysis tools that we considered in this experiment are inherently
single-threaded. In contrast, it is straightforward to parallelize EF�CF. Running EF�CF on
4 cores in parallel results in a significant speed improvement as can be seen in Figure 5.9
and in more detail in Section 5.4.4.

With the increased complexity of the input constraints, symbolic execution tools lose
their edge, as can be seen in Figure 5.10. Here, EF�CF is the only tool that solves all
complex contracts within a reasonable time. The justlen benchmark contracts use loops to
push and pop values of an array and, as such, favor fuzzing-based tools when compared
to symbolic execution tools that provide limited effectiveness due to path explosion (see
Figure 5.11). Note that EF�CF’s analysis time is almost constant for this benchmark. This
is due to the fact that EF�CF features a mutation operation that duplicates transactions to
become reentrant transactions. We designed this mutation to quickly identify same-function
reentrancy bugs, but incidentally, this is also the reason why EF�CF can very quickly solve
justlen contracts. At some point, EF�CF will simply duplicate the transaction, which doubles
the array size. As such, there is nearly no difference in reaching an array size of 64 or 128.
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Table 5.2: Capability of analysis tools to identify bugs with increasing transaction sequence
length. ✓ bug can be found, × bug never found within 48 h.

Tool multi complex justlen
2 3-7 8 9 10 5 7 9 8 64 128 256

teEther [KR18a] ✓ ✓ × × × ✓ × × × × × ×
MAIAN [Nik+18] ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ × × ×
EthBMC [FAH20] ✓ × × × × × × × ✓ × × ×
Manticore [Mos+19] ✓ ✓ × × × × × × × × × ×
ConFuzzius [Tor+21a] ✓ ✓ × × × × × × ✓ ✓ ✓ ✓
Echidna [Gri+20] ✓ ✓ ✓ × × × × × ✓ ✓ ✓ ✓
VeriSmart [SHO21; So+20] ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ × × ×
Smartian [Cho+21] ✓ ✓ × × × × × × ✓ ✓ ✓ ✓
EF�CF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Figure 5.12: Scalability experiments on various configurations of EF�CF with the multi
contact.

5.4.2 Scalability Ablation Study
As part of our ablation study, we also compare the various configurations in terms of scalability
to longer and more complex transaction sequences. We utilize the same scalability experiment
as in Section 5.4.1. However, we bound the execution time to a maximum of 8 h. We run
EF�CF in four configurations: Full EF�CF with ABI, full EF�CF without knowledge of the
ABI, fuzzing with the custom mutator only (EM ), and fuzzing with AFL++’s mutations only
(AFL). The results are shown for the multi, complex, and justlen benchmarks in Figure 5.12,
Figure 5.13, and Figure 5.14, respectively. While the AFL configuration generally provides
the highest throughput (see Table 5.3), it lacks structured mutation operations, such as
splicing at the transaction level. As such, the fuzzing process becomes ineffective and fails
to reliably generate even short meaningful transaction sequences. Furthermore, the AFL
configuration fails to identify a bug in any of the complex variants. This shows that the
custom mutator in EF�CF is essential to good fuzzing performance. Furthermore, we can
see that in this benchmark that the EM configuration performs best. The magic value
comparisons are best solved using the dictionary-based sampling employed by the custom
mutator for integer types. As such, spending more fuzzing time on dictionary sampling
increases the probability that the right value is sampled from the dictionary. However, since
the custom mutator utilizes the dictionary probabilistically, we also observe some extreme
outliers in these experiments. As the custom mutator performs mostly structural mutations
on the transaction sequences, we can see that it also performs best on the justlen experiment.

While the EM configuration performs best on the benchmarks presented here, we found
that without AFL’s mutations, and especially the input-to-state correspondence [Asc+19b]
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Figure 5.13: Scalability experiments on various configurations of EF�CF with the complex
contact.

mutation, there are several fuzzing roadblocks in practice, which cannot be solved by the
EM configuration. Furthermore, the benchmarks focusing on real-world smart contracts in
Section 5.4.3 show that the standard EF�CF configuration performs best.

Fuzzing without ABI When fuzzing without ABI information, EF�CF fully relies on the
coverage feedback to discover useful transaction inputs. Generally, EF�CF without ABI
information expectedly performs worse than fuzzing with ABI information. On the multi and
complex contracts fuzzing without ABI information identifies the bug in a mean of 223 min
(σ = 205). In comparison, fuzzing with ABI information requires a mean of 87 min (σ = 127)
to identify the bug. On the justlen benchmark, the difference is much smaller: 3.9 min with
ABI and 6.6 min without ABI. The fuzzer does not need to identify correct input parameters
to identify a bug in the justlen benchmark, as most of the exposed functions simply do not
require parameters. Performing structural mutations on the transaction sequence does not
require ABI information, and as such, the performance difference is much smaller.
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Figure 5.14: Scalability experiments on various configurations of EF�CF with the justlen
contact.

5.4.3 Throughput Ablation Study
We evaluate the various components of EF�CF and how they affect test case throughput and
achieved code coverage. We leverage a set of contracts consisting of a mix of real-world and
one of our benchmark contracts: the contracts Crowdsale [He+19] and the synthetic multi10
are representative of simpler contracts, while the IMBTC [imBTC], SpankChain [SpCLC],
CryptoBets and PackSale contracts are more complex real-world contracts. We run each
fuzzing configuration 20 times for 10 minutes and record the average test case executions per
second along with the EVM basic block coverage. Our evaluation results are summarized in
Table 5.3. We provide further experiments with the multi, complex, and justlen benchmark
contracts in Section 5.4.2.

We observe a significant drop in test case throughput when we disable evm2cpp and run
the smart contract in the EVM interpreter (designated as Interp in Table 5.3). This directly
translates to achieving less code coverage with the fuzzer, highlighting the importance of
evm2cpp in our design.

For the AFL configuration, we disable the custom mutator. For the EM configuration,
we disable AFL’s mutations. While the lightweight mutations performed by AFL++ result
in the highest throughput, they are not aware of the input structure and often achieve
worse code coverage given a certain time budget. Furthermore, we noticed that AFL++
alone fails to create combinations of transactions (see Section 5.4.2). In this respect, basic
block coverage is not a good metric since it does not account for different combinations
of transactions. Similarly, the custom mutator alone sometimes does not discover all code
paths due to worse throughput and the lack of AFL++’s input-to-state correspondence.
Typically, a combination of both, i.e., running full EF�CF, results in the best code coverage.
Since fuzzing campaigns utilize multiple cores in practice, we take inspiration from ensemble
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fuzzing [Che+19b] and automatically launch different fuzzer configurations in parallel if
multiple cores are available (see Section 5.3).

We compare the throughput of other fuzzers to that of EF�CF. Our measurements show
that the test case throughput of EF�CF is larger by one order of magnitude when compared
to other fuzzers. Within our benchmark set, EF�CF has a mean throughput of 24 301 exec/s
(σ = 7154). Echidna [Gri+20] achieves a throughput of 189 (σ = 183) and a maximum
throughput of 497 test cases per second. Confuzzius [Tor+21a] has a mean throughput of 78
transactions per second (σ = 25). The transaction throughput is always higher or equal to
test-case throughput since test cases typically consist of multiple transactions.

Table 5.3: Throughput measurements in average test case executions per second and mean
code coverage. Best coverage is underlined.

Interp AFL EM Full
Contract LOC exec/sec cov % exec/sec cov % exec/sec cov % exec/sec cov %

Crowdsale 41 13042 79.5 29688 76.1 19868 80.6 25858 87.3
multi9 150 12814 43.7 43053 40.8 20641 75.7 25817 52.5
IMBTC 664 6880 36.6 28372 52.6 18444 36.4 34510 52.9
PackSale 730 7146 65.0 32215 67.5 11952 60.2 24672 75.2
Spankchain 1048 6574 26.9 19837 47.0 17245 50.5 22698 41.7
CryptoBets 1142 3174 30.8 25122 35.0 10256 45.0 12246 40.5
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Figure 5.15: Results of running multiple analysis tools on a single core vs. running on 4
cores (marked with c4 ) in parallel on the multi dataset.

5.4.4 Multi-Core Performance
We also evaluate the multi-core performance of those analysis tools that support it: EF�CF,
Manticore, and Echidna. To parallelize Echidna, we utilize the echidna-parade [GG21] tool
to run multiple instances of Echidna in parallel. In contrast to the normal mode of operation
in echidna-parade, we always fuzz the full set of functions by not excluding any function
from the fuzzing runs. In our benchmarks, the default mode of operation is detrimental to
performance in terms of time-to-bug. Manticore natively supports multi-threaded analysis to
leverage multiple cores. For EF�CF, we leverage the multi-core fuzzing approach of AFL++.

Figure 5.15 shows the multi-core performance of several analysis tools on the multi contracts.
We can see that with EF�CF, the performance significantly increases between the single and
multi-core versions. This is primarily because EF�CF utilizes an approach similar to ensemble
fuzzing that spawns EF�CF’s core fuzzer in multiple different configurations. Similarly,
parallelizing Echidna with the echidna-parade tool shows significant improvements over the
single-core Echidna. In a multi-core setting, Echidna can find the transaction sequences
up to 8 transactions and features a significant speed-up for the transaction sequences with
lengths 4 to 7. For both fuzzers, we observe that some single-core runs are as fast or faster
than other multi-core runs. This is because of the probabilistic nature of fuzzing. However,
the multi-core runs reduce the variance between the runs, allowing the fuzzer to identify the
bug in a given time span more consistently. Interestingly, Manticore, the only other tool
with built-in multi-core support, does not gain a significant speedup in this experimental
setup. We suspect that the symbolic execution approach taken by manticore cannot fully
leverage multiple cores.
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5.4.5 Code Coverage Comparison
We perform scalability experiments using our own set of benchmark contracts. In this
section, we analyze the performance of EF�CF with respect to code coverage. Note that code
coverage is a necessary, but not sufficient, condition to also trigger bugs. We compare EF�CF
to two of the current state-of-the-art fuzzers for smart contracts, namely ILF [He+19] and
Confuzzius [Tor+21a]. Instead of using synthetic contracts, we assess the capabilities of
these fuzzers on a wide variety of real-world smart contracts. The goal of this experiment is
to compare the quality of the fuzzer-generated inputs.

We do not compare the fuzzers according to their time-to-bug, since (1) there are no good
datasets available that feature both ground truth and realistically complex contracts, and
(2) these fuzzers utilize bug oracles that differ too much to be directly comparable. As such,
we restrict ourselves to comparing the quality of the fuzzer-generated inputs according to
the achieved code coverage.

To create a realistic and useful dataset for our evaluation, we analyze the smartbugs-wild
dataset [Dur+20] that consists only of real-world smart contracts. We rank the contracts
according to their peak Ether balance as reported by the etherscan.io service. We then
selected the top 1000 contracts according to this ranking such that we get a realistic set of
important smart contracts. We do not sample arbitrarily from the Ethereum blockchain, as
this would increase the risk of obtaining toy contracts. However, not all of the contracts
are suitable for our comparison. As such, we select a subset of the acquired contracts that
are supported by all fuzzers in our evaluation. For example, the contract must not require
constructor parameters, as this allows us to easily deploy the contract in all fuzzers we
evaluate. In the end, the resulting dataset consists of a set of 253 contracts, which are
selected from the top 1000 contracts of the smartbugs-wild dataset.

We configure all the fuzzers in this experiment such that they behave reasonably similarly
and allow us to compare their results. For example, we noticed that Confuzzius achieves
substantially broader coverage whenever a smart contract contains hard-coded addresses.
The reason is that Confuzzius starts generating transactions originating from those hard-
coded addresses. This is something the other fuzzers do not support. While this behavior
does lead to good code coverage, the generated transaction sequences cannot actually be
performed on the blockchain, as an arbitrary address cannot be impersonated. As such, we
disabled marking the caller, i.e., the origin of a transaction, as an unconstrained symbolic
value in Confuzzius. Additionally, we had to patch Confuzzius’s coverage reporting to take
bytecode as input instead of source code. For ILF, we patched ILF to improve the reporting
of code coverage and transaction inputs and replaced the existing threshold on the number
of generated inputs with a time-based limit. For EF�CF, we enabled an over-approximating
mode, where all external addresses are considered to be contracts under attacker control.
Similar to the other fuzzers, we allow EF�CF to emulate calls originating from the creator
of the contract (e.g., the owner of the contract with special permissions).

To compare our implementation to existing fuzzers, we follow state-of-the-art recommen-
dations for comparing different fuzzers using statistically sound methods [AB14; Kle+18].
We repeat every experiment 30 times to account for the inherent randomness in the fuzzing
process. We limit the runtime to five minutes for each target. Due to the limited complexity
of smart contracts compared to traditional software, this allows most fuzzers to reach a cover-
age plateau. To calculate the required statistical evaluation metrics, we use SENF [Paa+21b],
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which allows us to easily assess how each tested fuzzer performs and compare the fuzzers
with each other.

The results of our experiments are summarized in Table 5.4a. Our results show that
EF�CF outperforms Confuzzius with statistical significance on 141 targets and on 120 targets
when compared to ILF. Confuzzius and ILF perform better than EF�CF on 83 and 112 of
the target contracts, respectively.

We also rank the contracts within our test set according to various complexity metrics.
We conduct an additional evaluation on the top 100 most complex targets with respect
to the number of logical lines of code, the number of contracts and libraries, the number
of comparisons, and the number of branches (see Section 5.1). As shown in Table 5.4b,
EF�CF performs better than Confuzzius as well as ILF on the majority of contracts across
all complexity properties. Thus, we conclude that EF�CF can handle increasingly complex
Ethereum smart contracts better than existing fuzzers.

Table 5.4: Comparison of smart contract fuzzers based on code coverage and the
SENF [Paa+21a] statistical evaluation framework.

(a) Comparison of all fuzzers on the full test
set: the number of times fuzzer A outper-
formed fuzzer B.

Fuzzer A
Fuzzer B EF�CF Confuzzius ILF

EF�CF - 141 120
ConFuzzius 83 - 105
ILF 112 136 -

(b) Number of targets, where EF�CF sta-
tistically significantly outperforms Con-
Fuzzius/ILF and vice versa on the top
100 targets in various complexity proper-
ties

EF�CF : ConFuzzius EF�CF : ILF

#LLOC 73 : 17 55 : 37
#funcs 66 : 22 46 : 42
#comp 60 : 28 66 : 26
#branch 77 : 15 54 : 37
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5.5 Bug Detection Capabilities
To assess the bug detection capability of EF�CF, we compare EF�CF with real-world con-
tracts that we obtained from prior studies [Bos+22; Cec+21; FAH20; Rod+19; Zho+20].
Note that after initial analysis, we concluded that existing benchmark datasets with ground
truth for Solidity/Ethereum analysis tools [Dur+20; GP20] are not suitable for testing/com-
paring dynamic analysis tools such as fuzzers. Both benchmark datasets consist mostly of
rather simple and very similar contracts. For example, the curated reentrancy dataset of
Durieux et al. [Dur+20] features mostly honeypot contracts that are designed to be easily
analyzed [TSS19]. Similarly, the reentrancy bugs injected by Ghaleb et al. [GP20] are too sim-
plistic: many of the injected bugs cannot be triggered by dynamic analysis tools (dead code)
or are trivially exploitable. We discuss these issues in more detail in Section 5.5.3. As such,
we rely on prior studies on real-world contracts for evaluating the bug detection capabilities
of EF�CF. In Section 5.5.1 we show that EF�CF is capable of identifying the vast majority
of access control bugs that have been identified in prior studies. Furthermore, EF�CF is
able to overcome the limitations of symbolic analyses and identify even more vulnerabilities
in those contracts, where the symbolic analyzer EthBMC timed out. Furthermore, we assess
the capability of EF�CF in discovering several reentrancy attacks known from prior studies
in Section 5.5.2. We compare with the symbolic analyzer Sailfish and show that EF�CF
identifies only those reentrancy issues that pose real security threats. The study by Bose
et al. [Bos+22] reports 26 contracts with true reentrancy bugs in the dataset. However, we
were able to confirm only 5 of these contracts to be vulnerable to Ether stealing with EF�CF.
Our (manual) analysis of the remaining 21 contracts reveals that, while the contracts can be
reentered in theory, all but one cannot be exploited. Finally, we show that EF�CF is capable
of identifying compositional security issues by evaluating on the contracts used by Cecchetti
et al. [Cec+21] in the evaluation of their static analyzer. Furthermore, we show that EF�CF
can automatically generate an exploit for the Uniswap/IMBTC compositional reentrancy
attack given only a list of involved smart contracts.

5.5.1 Access Control Vulnerabilities
Access control bugs such as an unprotected selfdestruct have been widely investigated [FAH20;
KR18a; Nik+18]. Frank et al. [FAH20] (EthBMC) leverage bounded model checking based
on symbolic execution and blockchain state imports to identify this class of faults. When
analyzing contracts deployed on the main Ethereum blockchain, it is important to import
their state into the analysis tool to avoid spurious false alarms. To compare with EthBMC,
we obtained a list of 2856 contracts vulnerable according to EthBMC. Note that only 16
contracts of this set have public ABI information available, making EF�CF rely solely on
coverage-guided grey-box fuzzing to identify valid transaction inputs for the remaining
contracts. We export the internal state of the contracts at block number 9 069 000 from
a go-ethereum archive node and import the state into EF�CF and fuzz all contracts until
the bug is discovered or for a maximum of 20 min. In total, EF�CF detects 2825 out of
2856 contracts as vulnerable after fuzzing for an average of 28.5 s (σ = 111.4) until the first
bug is discovered, which demonstrates the high effectiveness of EF�CF. For 18 contracts,
EF�CF detected no bug in our first run. The remaining contracts had issues due to errors
during state export. In a second run with an earlier blockchain state, we find that EF�CF
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identifies another 4 vulnerable contracts. After manual analysis, we concluded that 5 of the
contracts are only included in the EthBMC dataset due to errors in the EthBMC evaluation.
The remaining 12 contracts contain bugs missed by EF�CF. We argue that this is due to
inefficiency when fuzzing without ABI information.

We also applied EF�CF on 10 356 contracts which EthBMC was unable to analyze due
to a timeout after 30 min. This dataset represents contracts that cannot be analyzed with
bounded model checking, likely due to problems such as state explosion. In contrast, EF�CF
successfully processes all these contracts and achieves an average code coverage of 72.4 %
(σ = 17.9). Furthermore, EF�CF detected 85 vulnerable contracts in this set, among which
we manually checked 18 contracts with verified source code and found 7 new vulnerabilities.
For the remaining 11 contracts, EF�CF correctly identifies a transaction sequence to gain
Ether. However, after manual analysis, we conclude that these transaction sequences allow
for legitimate Ether gains and, as such, are false alarms with EF�CF.

Common False Alarms with EF�CF During our evaluation of the EthBMC dataset, we
identified a number of patterns in smart contracts that lead to false alarms in EF�CF.

• Gambling contracts: EF�CF identifies the right blockchain state and transactions, such
that the attacker always wins. In a real-world deployment, the attacker only has
limited control over the environment, such as the blockhash or block number. As such,
the attacks that EF�CF identifies are often not practical on the live blockchain.

• Airdrops: Many token contracts implement a so-called Airdrop mechanism, where the
contract gives out a certain number of free Tokens while the Airdrop is active. EF�CF
deterministically triggers the airdrop to gain tokens. If EF�CF can sell the tokens
again, EF�CF will report a false alarm.

• Interest pay-out: We encountered multiple smart contracts that implement interest
payout. For example, the contract allows anyone to invest Ether and then pays out a
fixed percentage in interest. EF�CF will flags this as a vulnerability since it results
in Ether gain. These contracts assume that the value of Ether is steadily increasing.
However, EF�CF does not account for any potential changes outside of the blockchain
environment, such as the exchange rate between USD and Ether.

We point out that in all these scenarios, there is a way to gain Ether from those contracts,
which EF/CF correctly reports. Fundamentally, these contracts violate the basic assumption
of EF�CF’s bug oracle that an unrelated third party should not be able to gain Ether by
interacting with a contract. Such contracts are a challenge for all analysis tools that attempt
to identify bugs in Ether handling (e.g., teEther, EthBMC, etc.).

5.5.2 Reentrancy Vulnerabilities
We evaluated EF�CF using a set of contracts vulnerable to reentrancy according to prior
studies [Bos+22; Cec+21; Rod+19; Zho+20]. Furthermore, we also compare EF�CF with
Confuzzius [Tor+21a] and the static source code analyzer Slither [FGG19] (see Table 5.5 for
a summary). Confuzzius and Slither feature a more heuristic detection of reentrancy issues
than EF�CF. Slither defines any state update after an external call as a potential reentrancy
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bug. Similarly, Confuzzius defines a reentrancy bug as an external call where some state
variable is read before the call and written after the call. Note that Confuzzius does not
actually generate any reentrant transaction sequence. As many contracts in the set of prior
studies [Rod+19; Zho+20] include false alarms, we filter out wrongly detected reentrancy
bugs by manually analyzing the reported contracts. Furthermore, many cases are trivial
reentrancy bugs, which we summarize as Trivial-RE in Table 5.5, which includes reentrancy
honeypot contracts [TSS19].

EF�CF is highly effective in discovering all known reentrancy issues. However, the
prototype implementation of EF�CF does not yet support contract creation at runtime. We
only noticed dynamic contract creation for “the DAO”, which is why we cannot process
this contract. The HODLWallet contract requires special attention: while this contract is
vulnerable to a reentrancy attack, it cannot be exploited to gain Ether. According to our
analysis, this contract allows users to invest Ether into the contract, but the contract never
returns all the invested Ether. However, when exploiting the contract’s reentrancy bug, a
user can withdraw all previously invested Ether, diverging from the contract’s malicious—but
intended—functionality. EF�CF’s bug oracle does not identify this as a reentrancy bug
since no Ether can actually be gained, although EF�CF generates a test case containing
the necessary reentrant transactions. For the InstaDice contract, Confuzzius reports many
additional reentrancy issues even when the contract calls into other trusted contracts instead.
EF�CF, on the other hand, executes also trusted contracts exported from the Ethereum
node and produces a full working exploit for the reentrancy bug without reporting false
alarms. Remarkably, EF�CF is the only dynamic analysis tool that is able to accurately
identify real-world reentrancy issues, such as the reentrancy bugs in the SpankChain and
DSEthToken contracts.

Fuzzing Honeypot Reentrancy Torres et al. [TSS19] discussed the phenomenon of honeypot
contracts. These contracts are deployed with source code often available on etherscan.io
and appear to be vulnerable to, e.g., reentrancy attacks. However, these contracts are, in
fact, a scam that targets malicious actors searching for easily exploitable contracts on the
blockchain. They require the attacker first to invest a certain amount of Ether to later
exploit the seemingly vulnerable contract. However, furtively, the code hides a mechanism
that prevents exploitation, locking the previously invested Ether of the attacker. Most of the

Table 5.5: Results for reentrancy issues for various analysis tools: False Alarms (∼), True
Alarms (✓), not applicable/incompatible (N/A), or as Missed Bug (×).

Contract EF�CF Confuzzius Slither

Example Figure 5.2 ✓ ∼ ∼
SpankChain [SpCLC] ✓ × ✓
DSEthToken [Rod+19] ✓ ✓ N/A
TheDAO [Rod+19] N/A ✓ N/A
HODLWallet [HODLW; Zho+20] × ✓ ✓
SysEscrow [SYES; Zho+20] ✓ × ✓
InstaDice [INSD; Zho+20] ✓ ∼ ✓
Trivial-RE [TSS19] ✓ ✓ ✓
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known reentrancy honeypot contracts use a call to an external library-like contract to revert
attack transactions. The deception works by suggesting the source code on etherscan also
provides the source code for the external contract when in fact, a different contract is used.

Many of the known honeypot contracts feature very obvious reentrancy vulnerabilities, as
these contracts are designed to be easily analyzable (i.e., to lure more attackers). Many of
those reentrancy honeypot contracts ended up in various datasets of prior studies [Bos+22;
Dur+20]. In the curated version of the smartbugs dataset, the majority of the contracts
identified as vulnerable to reentrancy are, in fact, honeypot contracts. This dataset contains
19 reentrancy honeypots and 12 other contracts vulnerable to reentrancy.

These honeypot contracts introduce significant bias into datasets. For example, a tool
that detects all honeypot contracts in the curated smartbugs dataset already seems to detect
the majority of reentrancy bugs. However, in reality, all these reentrancy bugs follow the
exact same code pattern. For this reason, we chose to summarize all these cases as trivial
reentrancy in Section 5.5.

The reentrancy honeypots can be analyzed in two ways: by relying on the source code only
and by importing code and state directly from the blockchain. It is important to distinguish
both cases since the contract is exploitable in the former, while in the latter, it is not. We
verified that EF�CF correctly identifies the reentrancy attacks in the first case. Here we
deploy a fresh instance of the contract, and the mechanism to prevent exploitation does
not work. As such, EF�CF can correctly identify the reentrancy vulnerability. However, if
we export the contract’s state from the blockchain—including the external contract that is
called—then the mechanism to prevent exploitation is working. In this case, EF�CF also
executes the second external contract, reverting the transaction before the reentrancy takes
place. As such, EF�CF correctly does not report any false alarms here.

Comparison with Sailfish As part of the evaluation of the Sailfish tool, Bose et al. released
a list of contracts where reentrancy causes inconsistent state according to Sailfish. This list
contains 1904 contracts, of which the Bose et al. verified 26 contracts to be true positives4.
Among the list of 1904 contracts, EF�CF identifies vulnerabilities in only 67 contracts.
However, in 8 of these 67 contracts, EF�CF discovers a vulnerability unrelated to reentrancy,
e.g., a controlled delegatecall vulnerability.

Furthermore, we analyzed the list of verified true positives in more detail. Among the
vulnerable contracts reported by the Sailfish tool, EF�CF correctly identifies 5 contracts
that can be exploited with reentrancy to steal Ether. Among these five contracts, one is
a test contract, one is a known honeypot, and the remaining three contracts are identical.
Furthermore, EF�CF identifies one contract that can be exploited due to an access control
bug, not a reentrancy bug. As discussed previously, EF�CF identifies the honeypot only as
vulnerable when deploying from source code but not when using exported state from the
blockchain. We manually identified one contract that seems to be vulnerable to reentrancy,
but no Ether is at stake. The remaining contracts exhibit reentrancy patterns, which are
likely not exploitable.

For example, the CommonWallet contract, depicted in Figure 5.16, is affected by a similar
Token-related reentrancy bug, as the Uniswap-V2 contract [Tor+21b]. Here, the attacker
must supply a ERC777 Token where a ERC20 Token is expected. Most (legitimate) ERC20

4https://github.com/ucsb-seclab/sailfish
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Token contracts do not perform callbacks to the attacker, and as such, the attacker cannot
trigger a reentrancy situation. However, this is different for ERC777 contracts that feature
callbacks by design. This allows the attacker to reenter the CommonWallet contract and
trigger a reentrancy bug. Currently, EF�CF does not detect Token-related bugs since EF�CF
has no concept of Tokens and, as such, does not regard Token-gains as a bug.

However, in reality, this reentrancy bug cannot be used to cause damage. The reason for
this is that the attacker would have to cause an integer underflow, which is prevented due
to the integer checking leveraged by the contract. As such, EF�CF would not identify a
possible reentrancy attack, even if there were a bug oracle for tokens, because there is no
way to exploit the reentrancy attack. We verified this by testing EF�CF with a contract that
exhibits the same vulnerability but with Ether instead of Tokens. We believe the reason for
this false alarm is that Sailfish does not accurately model the transaction-based execution
model of the EVM. It will eagerly report a bug without considering that the transaction will
revert later, a flaw common to many analysis tools [SSM20].

1 function safeSub(uint256 _x, uint256 _y) internal pure returns (uint256) {
2 assert(_x >= _y);
3 return _x - _y;
4 }
5 function sendTokenTo(address tokenAddr, address to_, uint256 amount) {
6 require(tokenBalance[tokenAddr][msg.sender] >= amount);
7 /* external call - might cause reentrancy */
8 if(ERC20Token(tokenAddr).transfer(to_, amount)) {
9 /* state update with underflow check in safeSub, which essentially checks the

10 balance again, i.e., */
11 //require(tokenBalance[tokenAddr][msg.sender] >= amount);
12 tokenBalance[tokenAddr][msg.sender] =
13 safeSub(tokenBalance[tokenAddr][msg.sender], amount);
14 }
15 }

Figure 5.16: CommonWallet reentrancy, which is not exploitable due to the integer overflow
check.

Compositional Security We follow the four examples used in the evaluation of the Serif
static analyzer [Cec+21] to show the feasibility of detecting compositional security violations
with EF�CF. We adapted the contracts from Serif’s evaluation set to be deployable and
exploitable in a realistic setting. Where Serif relies on manual annotations to detect potential
problems, we augment the contracts with assertions that are picked up by EF�CF to detect
a potential vulnerability beyond Ether-stealing. EF�CF accurately generates an Ether-
stealing reentrancy attack for the Uniswap and Multi-DAO contracts in the Serif dataset.
Furthermore, EF�CF generates transactions that violate the assertions for the KV-Store
and TownCrier contracts using reentrant transactions.

To evaluate EF�CF’s capabilities on a real-world example, we also fuzz the composition
of Uniswap V1 and IMBTC, which was attacked with reentrancy [Tor+21b]. We supply
EF�CF with the addresses of three contracts that should receive transactions (Uniswap,
IMBTC, and the ERC1820Registry) and export the state of these contracts at block number
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1 bool not_called_re_ent27 = true;
2 function bug_re_ent27() public {
3 require(not_called_re_ent27);
4 if( ! (msg.sender.send(1 ether) ) ){
5 revert();
6 }
7 not_called_re_ent27 = false;
8 }

Figure 5.17: An injected reentrancy bug, which is also detected by bug oracles that only
identify leaking ether without considering reentrancy.

9 600 000 shortly before the first known attack. We then fuzz this composition on 40 cores
for a maximum of 48 h. On average over 10 independent runs it takes EF�CF 1 h and 49 min
(σ = 6 h55 min) to generate a reentrancy exploit that, (1) registers an attacker contract in
the ERC1820Registry contract with the right hash to allow ERC777 callbacks, (2) buys
IMBTC tokens via the Uniswap contract, and (3) finally exploits the reentrancy to sell them
again with a profit.

5.5.3 Problems with Existing Datasets
By now, there are multiple attempts to create standardized datasets to evaluate smart
contract analysis tools [Dur+20; GP20]. However, they lack diversity of bugs and especially
so with respect to reentrancy bugs. They often only contain the simple same-function
reentrancy pattern and contain many honeypot contracts [TSS19].

Ghaleb et al. [GP20] attempt to synthesize a benchmark dataset using bug injection.
Unfortunately, we find that they are not suitable to test reentrancy detection based on
fuzzing or symbolic execution. The injected reentrancy bugs focus on classical same-function
reentrancy and do not cover more complex reentrancy patterns, such as cross-function
reentrancy [Rod+19]. Furthermore, the injected patterns are themselves suboptimal. For
example, many of the injected reentrancy bugs do not require a reentrant call to be exploitable.
Figure 5.17 shows an injected bug that is prone to reentrancy. However, the function can
also be identified as vulnerable without resorting to a reentrancy attack. For example,
MAIAN [Nik+18] detects an Ether leaking vulnerability in this function because the injected
function will unconditionally send Ether (line 4) the first time a caller calls the function.
Reentrancy is only necessary to repeatedly leak Ether. A second type of injected reentrancy
bug is shown in Figure 5.18. This reentrancy bug can never be triggered during fuzzing
or symbolic execution. The injected vulnerable function contains a guard, the require
statement in line 6, that cannot be satisfied. The require accesses a storage variable that is
never modified. As such, the reentrant call is essentially dead code, assuming the internal
state of the contract can be changed arbitrarily. Assuming this ability would be a huge
overapproximation and result in a lot of false alarms [FAH20; WC20]. As such, we conclude
that the reentrancy bugs injected as part of the SolidiFI project are not suitable to test
dynamic analysis tools, i.e., fuzzers or symbolic execution-based analyzers.
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1 // initialized with 0
2 mapping(address => uint) redeemableEther_re_ent25;
3 function claimReward_re_ent25() public {
4 /// since the balances mapping is never written anywhere else,
5 /// this require cannot be bypassed by a dynamic analysis tool.
6 require(redeemableEther_re_ent25[msg.sender] > 0);
7 /// unreachable code
8 uint transferValue_re_ent25 = redeemableEther_re_ent25[msg.sender];
9 msg.sender.transfer(transferValue_re_ent25); //bug

10 redeemableEther_re_ent25[msg.sender] = 0;
11 }

Figure 5.18: An injected reentrancy bug that cannot be triggered due a guarding condition
that cannot be satisfied.

5.6 Discussion and Related Work
As already discussed in Section 5.1, analyzing smart contract code has been the topic of a
rather large body of recent research. Inspired by the success in identifying vulnerabilities in
classical software, symbolic execution [Bos+22; FAH20; KR18a; Luu+16; Mos+19; Nik+18]
and fuzzing [Cho+21; Gri+20; He+19; Ngu+20; Tor+21a; WC20] have been applied to
smart contracts. However, when applying fuzzing and symbolic execution to smart contracts
a number of peculiarities have to be considered. Unfortunately, many of the existing fuzzers
and symbolic executors do not properly discuss many design decisions. In the remainder of
this section, we discuss several design choices of EF�CF and compare them to related work.

Fuzzing Structured Input On the protocol level, smart contracts take a variably-sized byte
string as input. However, this byte string is a highly structured input encoded according
to the ABI definition. If a contract receives wrongly structured input, it will quickly stop
execution. Symbolic execution tools handle this by providing unconstrained symbolic input
bytes and querying the SMT solver for solutions. Most current smart contract fuzzers [Gri+20;
He+19; Ngu+20] adapt an approach akin to grammar-fuzzing [Bur67; Yan+11] to randomly
generate structurally valid inputs based on the ABI. While EF�CF also utilizes the ABI
to efficiently mutate transaction inputs, it does not solely rely on the ABI for mutations.
EF�CF also features raw input mutations and also leverages the lightweight mutations of its
base fuzzer. Using the coverage feedback, EF�CF can discover structurally valid inputs even
without the ABI. This approach has two advantages. First, it allows EF�CF to fuzz contracts
where no source code or ABI is available. For example, our evaluation of the EthBMC
dataset shows that EF�CF can also identify access control bugs without any ABI definition.
Second, EF�CF can also discover bugs in unusual settings, e.g., EF�CF can identify bugs
that can only be triggered with structurally invalid inputs. EF�CF can also fuzz inputs
that contain byte strings that are further decoded elsewhere (e.g., because the contract
forwards all unknown calls to a library contract). Furthermore, EF�CF can fuzz the return
data of external calls, which is ABI-encoded but not part of the ABI definition. However,
fuzzing without ABI information is currently less well optimized in EF�CF (see benchmarks
in Section 5.4.2). To improve fuzzing efficiency, static analyses can be used to recover
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the ABI [Che+21; Gre+19] from the bytecode. Note that due to EF�CF’s probabilistic
usage of the smart contract’s ABI, EF�CF does not require a complete or accurate ABI
definition. A partial ABI definition covering most of the contract’s function would be enough
to increase fuzzing efficiency. For example, if the parameters of a function in the ABI cannot
be recovered, a generic byte string argument can be used instead, which is then mutated by
the regular mutations of EF�CF.
Bug Oracles Bug oracles are an essential part of an analysis tool. Contrary to native code
fuzzers, which feature de-facto standardized bug oracles [Ser+12], there is a wide spectrum
of bug oracles in smart contracts. All analysis tools define their own bug oracles, sometimes
with slightly different definitions of the same bug classes, making it hard to compare
analysis tools. Oyente [Luu+16], OSIRIS [FSS18], Confuzzius [Tor+21a], ILF [He+19], and
Sailfish [Bos+22] feature bug oracles that indicate issues, but not necessarily a security
vulnerability (or even a bug for that matter). For example, detecting a dependency on the
block timestamp might be a sign of a bad attempt at using randomness, or it might be a
legitimate use to implement a time-limited sale. Naturally, such oracles also result in a larger
number of alarms that might not be security-critical. However, the advantage of such oracles
is that they can uncover a larger set of issues. Developers can use these findings to increase
code quality by avoiding dangerous code patterns. Another type of analysis tool utilizes
Ether loss as a bug oracle to implement exploit generation [FAH20; KR18a; Nik+18] with a
very low number of false alarms. EF�CF utilizes the same bug oracle strategy but also covers
reentrancy attacks and complex interactions. The disadvantage of using an Ether-based
bug oracle is that Token-related vulnerabilities cannot be easily detected. However, similar
to the industry fuzzer Echidna [Gri+20], EF�CF supports using properties and assertions
as bug oracles during fuzzing. This allows EF�CF to identify various logic bugs, including
Token-related vulnerabilities, with the help of developer annotations.

Simulating Interactions All transaction-oriented analysis tools, such as fuzzers and sym-
bolic executors, simulate one or multiple attacker accounts interacting with the target
contract. However, not all tools can simulate the full spectrum of possible interactions.
More importantly, the majority of existing analysis tools [FAH20; Gri+20; He+19; KR18a;
Nik+18; Tor+21a] focus on generating a set of transactions originating from an externally
owned account (EOA), which does not allow reentrancy or external calls that return data.
Symbolic execution and hybrid fuzzing tools [FAH20; KR18a; Nik+18; Tor+21a] simulate
external calls to a certain degree by introducing fresh symbolic values for the returned
data. However, reentrancy is generally challenging for symbolic execution tools since it
might introduce path explosion [Kal+18]. Most fuzzers refrain from simulating external
calls with return values [Gri+20; He+19; Ngu+20]. To detect reentrancy, sFuzz introduces
dedicated attacker contracts that can be called during fuzzing [Ngu+20]. This allows sFuzz
to detect certain trivial reentrancy patterns but fails to adapt to contracts requiring more
complex interactions (e.g., cross-function reentrancy [Rod+19]). In contrast, in EF�CF, we
assume that transactions originate from an attacker smart contract, allowing more complex
interactions such as callbacks with arbitrary return data and reentrancy. This design decision
allows EF�CF to generate reentrancy attacks using a simple Ether-based bug oracle.
Simulating Benign Interactions An important property of a fuzzer is whether it simulates
the behavior of benign users, i.e., whether the fuzzer can generate transaction sequences in
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the form (tu, ta, t′
u, t′

a, . . .), where tu and t′
u are from a benign user, and ta and t′

a are from
an attacker. For instance, many smart contracts implement the Owned pattern: there is one
Ethereum account that has special privileges in the contract. This is often used to implement
deprecating or upgrading a contract (see Chapter 7), which entails being able to drain all
funds from the contract. If the fuzzer aims to reach optimal code coverage, then simulating
arbitrary addresses is beneficial to also reach code paths guarded by access control checks.
As such, many existing fuzzers, such as ILF [He+19] and Confuzzius [Tor+21a] adopt this
behavior by default. However, while this approach leads to good code coverage, it also entails
a larger number of false alarms. For example, in contracts with transferable ownership, the
fuzzer will make the simulated owner transfer the ownership to an attacker account. In turn,
this would allow the attacker to drain the funds of the contract. Obviously, this is a false
alarm since the real owner would never transfer ownership to an attacker. However, this
ownership concept is widespread in smart contracts, making existing fuzzers that adopt this
behavior produce many false alarms. For example, He et al. [He+19] describe a case study
of a vulnerability in the Grid contract. However, this is a false alarm as it would require
interaction with the contract by both the contract owner and a benign user. Both need to set
specific contract parameters such that the attacker is able to gain Ether. From our analysis
of this contract, we concluded that this is not something that the owner would do. Note that
EF�CF raises this exact same false alarm when we enable simulating transactions originating
from the owner. Ideally, one would simulate only benign user interactions. Unfortunately,
deciding which actions a benign user would perform is, in general, not possible since this
depends on the specific semantics and intentions behind a smart contract. As such, we opted
to disable the simulation of any non-attacker-controlled accounts in EF�CF.

Testing Multi-Contract Setups Smart contracts increasingly feature dependencies on
third-party contracts. To support such contracts, EF�CF allows the contract under test
to call other trusted contracts. However, EF�CF, as almost all other analysis tools, will
only execute transactions that target the smart contract in question. Hence, EF�CF will
not discover bugs that can only be triggered by an unsuspected state change in the trusted
dependencies of the contract under test. For example, certain attacks require the attacker
to first acquire tokens before proceeding to attack another contract that handles the token.
Recently, Echidna [Gri+20] introduced a multi-abi mode, where the fuzzer is allowed to
call functions on multiple smart contracts. Recent incidents such as the attacks against the
CREAM Finance [CREAM] or the Revest [REVST] smart contracts show that multi-contract
analysis is required for the automatic analysis of complex DeFI applications.

In this paper, we show that EF�CF can handle even complex inputs and dependencies
between transactions. We already extended EF�CF with an experimental mode that shows
that EF�CF can also be extended to multi-target fuzzing. This extension is conceptually
quite simple, as the input format just requires a selector field for the target of a transaction
that is then consumed by the harnessing code to select the target contract for a transaction.
However, this feature also requires careful performance engineering to make multi-target
fuzzing efficient while simultaneously avoiding a decrease in single-target fuzzing performance.
Additionally, when fuzzing targets that are exported from the blockchain, such a mode
requires additional analysis to determine the set of contracts that are useful to receive
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fuzzed transactions. As such, we leave extending EF�CF with such a mode as an interesting
direction for future work.

5.7 Conclusion
Due to their high popularity, smart contracts are increasingly used to encode complex business
logic in Ethereum and are becoming prominent features of other blockchain platforms. Hence,
there is a high demand for developing highly efficient and scalable techniques to perform
automated security analysis of smart contracts.

Unlike existing fuzz testing approaches for Ethereum smart contracts, our framework
EF�CF specializes in high-throughput fuzzing. This is achieved by employing two techniques
to speed up fuzzing: (a) a novel translation technique that translates contract bytecode
to native C++ code and (b) with efficient structural mutations on transaction sequences
and the associated transaction inputs. EF�CF offers a variety of advantages compared to
existing testing approaches, including increased code coverage, reduced time to discover bugs,
the capability to model complex interactions (e.g., reentrant transactions), and analysis
capabilities for highly complex contracts. Given the popularity of cryptocurrencies along
with the steadily increasing value of assets that smart contracts manage, it is important
to improve the state of automated security testing of smart contracts. As such, we will
release EF�CF and the benchmarks that we developed for our evaluation as open-source
software. We hope this allows developers to leverage efficient automated testing of contracts
and fosters additional research in smart contract security.
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CHAPTER 6
MITIGATION OF REENTRANCY ATTACKS

In previous chapters, we discuss vulnerabilities in smart contracts (Section 3.2) and how to
automatically identify such vulnerabilities (Chapter 5). However, this still leaves already
deployed smart contracts at risk. We note that fixing discovered bugs in smart contracts
is particularly challenging due to three key challenges: (1) the code of a smart contract
immutable after deployment, (2) smart contract owners are anonymous, i.e., responsible
disclosure is usually infeasible, (3) existing approaches are mostly performing offline analysis
and are susceptible to missing unknown run-time attack patterns. As a consequence
of the immutability, approaches that prove correctness or absence of a certain type of
vulnerability [Kal+18; Luu+16; Sch+20b; Tsa+18] are only important for the development
of future smart contracts, but leave already deployed (legacy) contracts vulnerable. More
specifically, to deal with a vulnerable contract and restore a safe state, the owner of the
contract must deprecate the vulnerable contract, move all funds out of the contract, deploy
a new contract, and move the funds to the new contract. This process is largely cumbersome
since the address of the vulnerable contract might be referenced by other contracts. We
discuss how to streamline the process of updating smart contracts in Chapter 7. Finally,
offline analysis techniques typically cannot fully cover the run-time behavior of a smart
contract, thereby missing new attack patterns exploiting code constructs that were believed
to be not exploitable.

In this chapter, we show how to tackle these challenges and how to prevent legacy,
potentially vulnerable, smart contracts from being exploited (1) without changing the smart
contract code, and (2) without possessing any semantic knowledge of the smart contract.
We focus our analysis on reentrancy attacks, which are arguably the most challenging
vulnerability class. Reentrancy issues continue to be exploited in multiple major incidents
since the infamous “The DAO” incident [REVST; CREAM; Jen16; Tor+21b].

Contributions In this chapter, we present the design and implementation of Sereum
(Secure Ethereum), which is able to protect existing, deployed contracts against reentrancy
attacks by performing run-time monitoring of smart contract execution. Given our run-time
monitoring technique, Sereum is able to cover the actual execution flow of a smart contract
to accurately detect and prevent attacks. As such, our approach also sheds important light
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on the general problem of the incompleteness of any offline static analysis tool. To underline
this fact, we present new reentrancy attack patterns (Section 6.2), which are not covered
accurately in static analysis tools.

We present our prototype implementation of Sereum for the EVM, in which we introduce
a hardened EVM that leverages taint tracking to monitor the execution of smart contracts.
While taint tracking is a well-known technique to detect leakage of private data [Enc+14]
or memory corruption attacks [CLO07a], we apply it for the first time to a smart contract
execution platform. Specifically, we monitor data flows from storage variables to control-flow
decisions. Our main idea is to automatically introduce write locks (i.e., mutexes), which
prevent the contract from updating storage variables in other invocations of the same contract
in the same transaction. Sereum prevents any write to variables, which would render the
contract’s state inconsistent with a different re-entered execution of the same contract.
Sereum also rolls back transactions that trigger an invalid write to variables—thereby
effectively preventing reentrancy attacks. Furthermore, Sereum can also be used as a
passive detection tool, where it does not perform rollbacks of attack transactions but only
issues a warning for detected attacks.

We perform an extensive evaluation of our approach by re-executing a large subset of
transactions of the Ethereum blockchain (Section 6.5). Our results show that Sereum
detects all malicious transactions related to the DAO attack and only incurs 9.6 % run-time
overhead. We further verify our findings by using existing vulnerability detection tools and
manual code analysis on selected contracts. Although Sereum exhibits a false alarm rate of
only 0.06 %, we provide a thorough investigation of false alarms associated with our approach
and other existing static analysis tools [Luu+16; Tsa+18]. We thereby demonstrate that
Sereum provides improved detection of reentrancy attacks compared to existing approaches
with negligible run-time overhead.

The basis for this chapter is the following publication:
“Sereum: Protecting Existing Smart Contracts Against Re-Entrancy Attacks”. 26th Annual
Network and Distributed System Security Symposium (NDSS), 2019. Michael
Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi

6.1 Problem Statement
In this chapter, we propose a defense that protects existing, deployed smart contracts
against reentrancy attacks in a backward-compatible way without requiring source code
or any modification of the contract code. As mentioned earlier, reentrancy patterns are
prevalent in smart contracts and require developers to carefully follow the implementation
guidelines [SolWd].

We observed in various incidents [REVST; CREAM; Jen16; Tor+21b] that contracts that
are vulnerable to reentrancy attacks often suffer from high losses of tokens or Ether. Prior
to our study, the only publicly documented reentrancy attack,was against the “The DAO”
contract [Pri16]. Our evaluation shows that reentrancy attacks have not yet been launched
against other contracts (except for some new minor incidents we will describe in Section 6.5).
However, since our original study, various incidents due to reentrancy attacks have been
demonstrated [REVST; CREAM; Tor+21b]. These findings demonstrate that a systematic
defense against reentrancy attacks is required to protect these contracts from being exploited.
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As discussed in Chapter 5, the majority of defenses deploy static analysis and symbolic
execution techniques to identify reentrancy vulnerabilities. While these tools surely help
avoid reentrancy for new contracts, how to protect existing ones remains open. That is,
fixing smart contract vulnerabilities in deployed smart contracts using existing analysis tools
is highly challenging owing to the immutability of smart contract code and the anonymity
of smart contract owners. We discuss smart contract upgrade strategies in more detail in
Chapter 7.

Apart from these fundamental limitations, we also observe that existing detection ap-
proaches fail to effectively detect all reentrancy vulnerabilities or suffer from a high number
of false positives. More specifically, we note that existing approaches can be undermined
by advanced reentrancy attacks. To this end, we systematize existing reentrancy patterns
and identify new reentrancy patterns. We show that existing tools do not flag as reen-
trancy vulnerabilities but are nevertheless exploitable. We classify reentrancy attacks into
(1) cross-function reentrancy, (2) delegated reentrancy, (3) create-based reentrancy, and
(4) unconditional reentrancy. We describe the patterns in detail in Section 6.2. While
cross-function reentrancy vulnerabilities have been partially discussed in the Ethereum com-
munity [Conb; Dai16b], we believe that our study is the first presentation of delegated and
create-based reentrancy attacks. All of these attacks are either missed or imprecisely detected
by the state-of-the-art detection tools such as Oyente [Luu+16], Securify [Tsa+18], and
ZEUS [Kal+18]. In what follows, we present attacks that exploit these reentrancy patterns
and discuss why existing tools cannot accurately mark the contract code as vulnerable. As
we show, these attacks map to standard programming patterns and are highly likely to be
included in existing contracts. To re-produce our attacks and test them against the public
detection tools, the source code of the vulnerable contracts and the corresponding attacks is
available online [Rod].

6.2 New Reentrancy Attack Patterns
This section presents our systematization of reentrancy patterns. We base the systematization
presented in this section on our previous publication [Rod+19], where we described several
reentrancy patterns for the first time in academic literature. Note that we extended the
original systematization by the unconditional reentrancy pattern.

Same-Function Reentrancy

Same-function reentrancy became publicly known due to the infamous “The DAO” incident
and is arguably the most widely known type of reentrancy. As a consequence, many analysis
tools are also designed to detect the same-function reentrancy pattern [Kal+18; Luu+16;
Tsa+18]. The same-function reentrancy pattern is arguably rather simple: the attacker forces
a call to the same function in a reentrant manner. Since the function is not reentrancy-safe,
the attacker can gain some advantage, e.g., stealing Ether. Figure 3.6 shows an example of a
same-function reentrancy vulnerability. Here the attacker can repeatedly call the withdraw
function to bypass the balance check.

Cross-Function Reentrancy
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The cross-function reentrancy attack pattern exploits the fact that a reentrancy attack is
not limited to a single function. Instead, the attack can also span over multiple functions
of the victim contract. This means that instead of calling the same function again, the
attacker instead calls into another public function of the smart contract. Cross-function
reentrancy attacks apply to all functions that operate on the same state variables. If two
functions do not share access to a state variable, they are independent. As such, the attacker
cannot modify the behavior of the smart contract using the reentrant invocation. Our results
(see Section 6.5) show that such cross-function reentrancy attacks are equally dangerous as
traditional same-function reentrancy. Moreover, more recent real-world incidents were due
to cross-function reentrancy attacks, such as the Uniswap V1 incident [Tor+21b].

Consider the short snippet from a contract, which resembles an ERC20 Token, depicted
in Figure 6.1. The function withdrawAll performs a state update on the tokenBalance
variable after an external call. Same-function reentrancy is thwarted in this case because
the etherAmount is set to zero before the external call. The condition check in line 7
cannot evaluate to true anymore. This effectively prevents an attacker from reentering the
withdrawAll function. However, the attacker can still call other functions in a reentrant
manner. For example, the attacker can reenter the transfer function. Note that this function
also uses the—now inconsistent—tokenBalance variable. As a result, the reentrant call to
the transfer function allows the attacker to transfer tokens to another address before the
withdrawAll finishes execution. The attacker utilizes this to move the tokens to another
address while calling the withdrawAll function, essentially creating new tokens out of thin
air.

In general, detecting cross-function reentrancy is challenging for any static analysis tool
due to the potential state explosion in case every external call is checked to be safe for
every function of the contract. For this reason, many early academic analysis tools do
not accurately address cross-function reentrancy. Namely, ZEUS [Kal+18] omits to verify
cross-function reentrancy safety, and Oyente [Luu+16], an early symbolic executor, does not
flag the code depicted in Figure 6.1 as vulnerable to reentrancy. This is because Oyente
reports reentrancy only if the same instruction can be reached in a reentrant call (i.e., by
definition, same-function reentrancy). However, recent advances in static analysis methods
make it possible to identify cross-functions issues or even prove their absence [Cec+21;
Sch+20b]. Similarly, recent work in symbolic execution tools also allows the detection
of cross-function reentrancy vulnerabilities. For example, Manticore [Mos+19] is able to
detect cross-function reentrancy issues. To avoid state explosion during analysis, many
analysis tools utilize the over-approximating no write after call policy, which we discussed
earlier in Section 3.2.3. This also captures cross-function reentrancy but is overly restrictive
in general. In general, ECFChecker [Gro+18] is able to detect cross-function reentrancy
attacks. However, during our evaluation, we were able to construct a contract that can be
exploited with a cross-function reentrancy attack without being detected by ECFChecker
(see Section 6.5).
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1 mapping (address => uint) tokenBalance;
2 mapping (address => uint) etherBalance;
3

4 function withdrawAll() public {
5 uint etherAmount = etherBalance[msg.sender];
6 uint tokenAmount = tokenBalance[msg.sender];
7 if (etherAmount > 0 && tokenAmount > 0) {
8 uint e = etherAmount + (tokenAmount * currentRate);
9 etherBalance[msg.sender] = 0;

10 // cannot re-enter withdrawAll()
11 // However, can re-enter transfer()
12 msg.sender.call.value(e)();
13 // state update causing inconsistent state
14 tokenBalance[msg.sender] = 0;
15 }
16 }
17 function transfer(address to, uint amount) public {
18 // uses inconsistent tokenBalance (>0) when re-entered
19 if (tokenBalance[msg.sender] >= amount) {
20 tokenBalance[to] += amount;
21 tokenBalance[msg.sender] -= amount;
22 }
23 }

Victim
withdrawAll()

Attacker

Victim
transfer(address, uint)

CALL

CALL

re-enter different function

Figure 6.1: The upper part shows the relevant code from a contract, which is modeled after
a typical ERC20 Token contract. This code contains a cross-function reentrancy
bug. The lower part shows the call chain during the attack. The attacker first
calls withdrawAll and then reenters the transferToken function. For a successful
attack, we assume the attacker is then able to exchange the tokens for Ether.
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Delegated Reentrancy

1 library Lib { // Library contract
2 function send(address to, uint256 amount) public {
3 to.call.value(amount)(); // CALL
4 // ...
5 }
6 contract Victim {
7 mapping (address => uint) public credit;
8 Lib lib; // address of library contract
9 // ...

10 function withdraw(uint amount) public {
11 if (credit[msg.sender] >= amount) {
12 // DELEGATECALL into Library
13 address(lib).delegatecall(
14 abi.encodeWithSignature("send(address,uint256)", to, amount));
15 // state update after DELEGATECALL
16 credit[msg.sender] -= amount;
17 }
18 // ...

Victim

Library

Attacker

Victim

DELEGATECALL

CALL

CALL

Figure 6.2: The upper part shows the relevant solidity source code. The lower part shows the
call chain for a delegated reentrancy attack. Analyzed in isolation, the Victim
and the Library contract are not vulnerable to reentrancy. However, when the
Victim contract is combined with the Library contract, it becomes vulnerable. In
this simplified case the Library contract is simply used for sending Ether.

The key issue with the delegated reentrancy patterns is that the attack exploits the fact
that the reentrancy is hidden within a DELEGATECALL or CALLCODE instruction. These EVM
instructions are intended for implementing library contracts and allow a contract to execute
the code of another contract in its own execution context. In Ethereum, library contracts
are simply other contracts deployed on the blockchain. When a contract invokes a library
contract with one of the special call instructions, they share the same execution context. As
such, a library has full control over the calling contract’s funds and internal state (storage
region). As with traditional software, libraries can be used to avoid duplicating code, as
every library use re-uses the same code, which is deployed only once on the blockchain.
Furthermore, it also allows a contract to update functionality by switching to a newer version
of the library (see Chapter 7 for a longer discussion).

129



Chapter 6 Mitigation of Reentrancy Attacks

The delegated reentrancy pattern always affects a combination of contract and library
contract. We consider such a pair to be vulnerable to a delegated reentrancy if the state
update takes place in one contract and the external call is issued in the other. For example,
the improper state update happens in the library after the contract has already performed
the external call. The problem is that when each one of the contracts is analyzed in isolation,
none of the contracts exhibit a reentrancy vulnerability. The reentrancy vulnerability emerges
Only when both contracts are considered in combination. Figure 6.2 depicts a simplified
example of a contract vulnerable to delegated reentrancy. The main contract uses a library
contract for issuing external calls, and as such, the external call is hidden from analysis tools.

Detecting delegated reentrancy attacks is a significant challenge for existing offline analysis
tools. The problem is that during analysis, the code of the library contract is not available to
the analysis tool. As such, offline analysis tools, such as Oyente [Luu+16] or Securify [Tsa+18],
fail to identify the delegated reentrancy vulnerability due to under-approximation. However,
other static analyzers are aware of this pattern and do over-approximate and identify such
issues [Gie+22]. Fuzzing and symbolic execution techniques could potentially leverage the
current blockchain state to infer which library the contract calls. This allows the executor to
fetch the code of the library contract and continue symbolic execution. However, there is
one downside to this approach: it is not a future-proof solution, as an updated version of the
library contract might introduce a new vulnerability in the future. Dynamic analysis tools
that analyze transactions at runtime can easily detect such delegated reentrancy issues. For
example, dynamic analysis tools, such as Sereum (see Chapter 6) or ECFChecker [Gro+18],
are able to detect delegated reentrancy attacks, as they analyze a combination of contracts
and libraries.

Create-Based Reentrancy

Similar to the delegated reentrancy pattern, this pattern abuses the fact that a contract’s
constructor can issue further external calls. Recall that contracts can either be created
by accounts (with a special transaction) or by other contracts using the CREATE family of
opcodes. In solidity, a new contract can be created with the new keyword, which translates
to the CREATE instruction on the EVM level. Whenever a new contract is created, the
constructor of that contract will be executed immediately. Usually, the newly created
contract will be trusted and, as such, does not pose a threat. However, the newly created
contract can issue further calls in the constructor to other—possibly malicious—contracts.
To be affected by a create-based reentrancy issue, the victim contract must first create a new
contract and then update its own internal state, resulting in a possible inconsistent state.
The newly created contract must also issue an external call to an attacker-controlled address.
This allows the attacker to reenter the victim contract and exploit the inconsistent state.

Create-based reentrancy is overlooked in many state-of-the-art analysis tools. For example,
Oyente, Manticore, and ECFChecker consider only CALL instructions when checking for
reentrancy vulnerabilities. Hence, they all fail to detect create-based reentrancy attacks.
Similar to delegated reentrancy, the create-based reentrancy vulnerability emerges only when
two contracts are combined. Thus, the contracts must also be analyzed in combination.

Securify [Tsa+18] and Mythril [Conc] do not consider CREATE as an external call and thus
do not flag subsequent state updates. Due to their conservative policy of flagging all state
updates after external calls, they could simply include the CREATE instruction into the list of
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external call instructions, allowing them to handle create-based reentrancy. However, this
will almost always result in a false alarm. The CREATE instruction returns the address of
the newly created contract. This address is needed for further interactions with the newly
created contract. As such, it is very likely that this address is saved into the storage area of
the caller, i.e., a write after an external call.

Unconditional Reentrancy

1 contract Victim {
2 mapping (address => uint) private balance;
3

4 function withdrawAll() public {
5 msg.sender.call{value: balance[msg.sender]}("");
6 balance[msg.sender] = 0;
7 }
8 // ...
9 }

Figure 6.3: Unconditional reentrancy pattern, where a successful attack does not bypass any
condition.

Typically a reentrancy attack will try to subvert a business logic check of an application.
Every high-level check (e.g., an if statement, an assert statement, etc.) is implemented as a
conditional jump (JUMPI) on the EVM level. Essentially, here we have a data-dependency of
a conditional control-flow instruction, the JUMPI, to an inconsistent value loaded from storage.
Most real-world reentrancy attacks observed and all reentrancy patterns discussed so far
share this property. However, the root cause of the reentrancy bug is not necessarily a data
dependency on a control-flow instruction. Similarly, a data-dependency of a state-changing
instruction to an inconsistent storage value can cause a reentrancy bug.

One very simple example is the implementation of a withdrawAll function depicted in
Figure 6.3, which will simply let the caller withdraw all previously invested Ether. In this
example, the contract VulnBank unconditionally sends ether to the sender (msg.sender). It
is not necessary to perform any additional checks. If the sender has not invested any Ether,
the amount of transferred ether is 0. Since the gas usage must be paid for by the caller
of the contract, such an invocation does not harm the contract. However, an attacker can
reenter this function and exploit the inconsistent state to drain the contract of Ether.

6.3 Design Overview
In this section, we describe our approach to detect reentrancy attacks based on run-time
monitoring at the level of EVM bytecode instructions. Our approach, called Sereum (Secure
Ethereum), is based on extending an existing Ethereum client, which we extend to perform
run-time monitoring of contract execution.

Architecture Figure 6.4 shows an overview of the Sereum architecture. For a standard
Ethereum client, the EVM features a bytecode interpreter, which is responsible for executing
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Bytecode Interpreter

Transaction Manager Attack Detector

Taint Engine

Ethereum Virtual Machine
Sereum

Figure 6.4: Architecture of enhanced EVM with run-time monitoring.

the code of the smart contracts. The transaction manager executes, verifies, and commits
new and old transactions. Every invocation of a smart contract happens within a transaction
in the Ethereum network. Transactions are then grouped together in blocks. Every miner in
the Ethereum network must execute all transactions locally to generate the new state of
the latest block on the blockchain. To verify the blockchain’s current state, a node in the
Ethereum network has to replay the execution of all previous transactions.

Sereum extends the EVM by introducing two new components: (1) a taint engine,
and (2) an attack detector. The taint engine performs dynamic taint-tracking. Dynamic
taint-tracking, or dynamic data-flow analysis in general, assigns labels to data at pre-defined
sources and then observes how the labeled data affects the execution of the program [SAB10].
To the best of our knowledge, Sereum is the first dynamic taint-tracking solution for
smart contracts. The attack detector utilizes the taint engine to recognize suspicious states
of program execution, indicating that a reentrancy attack is happening in the current
transaction. It interfaces with the transaction manager of the EVM to abort transactions as
soon as an attack is detected.

Detecting Inconsistent State To effectively reason about a malicious reentrance into a
contract, we need to detect whether a contract acts on inconsistent internal state. Note that
any persistent internal state is stored in the storage memory region of the EVM. Variables
that are shared between different invocations of a contract are always stored in the storage
region. As such, only the storage region is relevant for reentrancy detection. Thus, Sereum
applies taint tracking to storage variables as these are the only internal state variables capable
of affecting a contract’s control flow in a subsequent (reentered) invocation of the contract.
The intuition behind Sereum’s approach is that if a control-flow decision is dependent on
storage variables, an attacker can manipulate the outcome of a conditional branch decision
by reentering the contract. In turn, manipulating a conditional branch allows the attacker
to manipulate the overall behavior of the contract. Hence, reentrancy attacks apply to
contracts that execute conditional branches dependent on persistent internal state, i.e., the
storage region.

The main idea behind Sereum is to detect state updates, i.e., altering of storage variables,
after a contract (denoted as Victim contract) calls into another contract (denoted as Attacker
contract). Notice that not all state updates resemble malicious behavior, but only those
where Victim is reentered and acts upon the updated state. Typically, the goal of reentrancy
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attacks is to bypass validity checks in the business logic of the Victim contract. As such,
Sereum focuses only on conditional jumps and the data that influences the conditional
jumps. Notice that it is also possible for a contract to transfer Ether without performing
any validity check. Deploying such a contract would be highly dangerous and inefficient due
to the unnecessary consumption of gas. The original version of Sereum did not explicitly
capture such cases. However, in an extended version of Sereum, we cover this kind of
reentrancy attack by issuing write-locks not only for behavior-changing variables but also
for variables that are passed to other contracts during external calls (such as Ether amount
or call input).

Consider the example shown in Figure 6.5, Victim calls into the Attacker contract. The
Attacker then forces reentrancy into the Victim contract by calling into the Victim again. The
second reentered invocation of Victim reads from a storage variable and takes a control-flow
decision based on that variable. After the Attacker contract eventually returns again to
Victim, the Victim contract will update the state. However, at this point, it is clear that the
reentered Victim used a wrong value read from inconsistent internal state for its conditional
branch decision.

The key observation is that inconsistent state arises if (1) a contract executes an external
call to another contract, (2) the storage variable causing inconsistency is used during the
external call for a control-flow decision or as a parameter to an external call, and (3) the
variable is updated after the external call returns. Next, we describe in more detail how the
taint engine and the attack detector detect inconsistent state at the EVM level.

The primary mechanism to detect reentrancy here is detecting the influence of an incon-
sistent storage variable on a control-flow decision, i.e., a conditional jump, during execution.
However, while this captures a large variety of vulnerabilities, it does not capture uncondi-
tional reentrancy. As such, we also track the usage of inconsistent variables as parameters to
external calls. More specifically, we analyze the call value, i.e., the transferred cryptocurrency,
and the input data provided to the called smart contract.

Victim Attacker Victim
(re-entered)

Call Attacker

Call Victim

Read Obsolete State
Conditional Branch

· · ·

Update State

CALL

CALL

RETURN

RETURN

Figure 6.5: reentrancy attack exploits inconsistent state among different invocations of a
contract.
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Taint Engine and Attack Detector To detect state updates, which cause inconsistency, we
need to know which storage variables the contract used for control-flow decisions. On the
EVM bytecode level, a smart contract implements any control-flow decision as a conditional
jump instruction. Consequently, we leverage our taint engine to detect any data flow from a
storage load to the condition processed by a conditional jump instruction. This ensures that
we only monitor those conditional jumps which are influenced by a storage variable. For every
execution of a smart contract in a transaction, Sereum records the set of storage variables,
which were used for control-flow decisions. Using this information, Sereum introduces a set
of locks that prohibit further updates for those storage variables. If a previous invocation
of the contract attempts to update one of these variables, Sereum reports a reentrancy
problem and aborts the transaction to avoid exploitation of the reentrancy vulnerability.

In the simplest case, the attacker directly reenters the victim contract. However, the
attacker might try to obfuscate the re-entrant call by first calling an arbitrarily long chain of
nested calls to different attacker-controlled contracts. Furthermore, during the external call,
the attacker can reenter the victim contract several times, possibly in different functions
(as shown in the cross-function reentrancy attack described in Section 6.2). This has to
be taken into account when computing the set of locked storage variables. To tackle these
attacks, Sereum builds a dynamic call tree during the execution of a transaction. Every
node in the dynamic call tree represents a call to a contract, and the depth of the node in
the tree is equal to the depth of the contract invocation in the call stack of the EVM. We
store those storage variables which influence control-flow decisions as set Di for every node
i in the dynamic call tree. The set of storage variables Li that are locked at node i is the
union of Dj for any node j of the same contract as i that belongs to the sub-tree spanning
from node i.

Example of Dynamic Call Tree Figure 6.6 depicts an example for Sereum’s generation of a
dynamic call tree for a given Ethereum transaction. A possibly malicious contract A reenters
a vulnerable contract C multiple times at different entry points (functions). First, as shown
on the left sub-tree, contract A calls C, C calls A, and A finally reenters C. This sub-tree
would be equivalent to a classical reentrancy attack, as shown previously in Figure 3.6. The
variables locked during the first execution of contract C (node marked with 2) are impacted
only by the lower nodes in the call tree. The second execution of contract C (in node 4) uses
the storage variable V1 for deciding a conditional control flow. Hence, this variable must not
be modified after the call in the execution of node 2.

In contrast, the right side of the call tree contains a more diverse set of nodes. For instance,
the right part of the call tree could be part of a cross-function reentrancy attack. We can
observe that different functions were called in the various re-entrant invocations of C because
the variables used for conditional branches are different. Note that none of the sets D5, D7,
D8, and D10 are equal. Contract C performs two calls into A in node 5. These calls reenter
C in nodes 7, 8, and 10. For the execution of C from node 5, we lock all variables from the
subtree below node 5. Note that although variable V1 is locked in node 2, it is not in the set
of locked variables L5. This means that no further calls starting from node 5 have used the
variable V1 for a control-flow decision; thus, V1 can be safely updated in node 5, which will
not change the behavior in any of the nodes 7, 8 and 10 unexpectedly.
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Figure 6.6: Dynamic call tree of an Ethereum transaction. Contract A is reentered several
times. Vk are storage variables. Di is the set of storage variables, which influence
control-flow decisions in node i. Li is the set of storage variables, which are
locked at node i and cannot be updated anymore.

A naive implementation of Sereum could just lock all variables which were used for control-
flow decisions. However, as we can see from Figure 6.6, this would result in unnecessary
locking of variables when complex transactions are executed. In turn, this would also result
in a high number of false alarms. For example, contract C can safely update the state
variables V2, V3, and V4 in node 2 because they were not used for conditional branches during
the execution of node 4. Similarly, node 5 can safely update V1 even though it was used for
a control-flow decision in a re-entrant call at node 4.

The dynamic call tree allows Sereum to tackle the challenging new reentrancy attacks
we discuss in Section 6.2. Recall that detecting cross-function reentrancy is challenging
for static analysis tools due to potential state explosion. Since Sereum performs dynamic
analysis, it does not suffer from such kind of weakness; it only analyzes those cross-function
reentrant calls that actually occur at run-time. Similarly, delegated reentrancy attacks are
detected as Sereum, in contrast to existing tools, does not inspect contracts in isolation but
analyzes and monitors exactly the library code which is invoked when a transaction executes.
That is, as an extension to the Ethereum client, Sereum can access the entire blockchain
state and hence retrieve the code of every invoked library contract. Our taint engine simply
propagates the taints through the library code. This also naturally covers any future updates
of the library code. Next, we describe the implementation details of Sereum.
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6.4 Implementation Details
We implemented Sereum based on the popular go-ethereum1 project, whose client for the
Ethereum network is called geth. In our implementation, we extended the existing EVM
implementation to include the taint engine and the reentrancy attack detector.

We faced one particular challenge in our implementation: variables stored in the storage
memory region are represented on the EVM bytecode level as load and store instructions
to specific addresses, i.e., any type information is lost during compilation. Hence, only
storage addresses are visible on the EVM level. Most storage variables, such as integers, are
associated with one address in the storage area. However, other types, such as mapping of
arrays, use multiple (not necessarily) adjacent storage addresses. As such, Sereum tracks
data-flows and sets the write-locks on the granularity of storage addresses.

In the remainder of this section, we describe how Sereum tracks taints from storage
load instructions to conditional branches to detect storage addresses that reference values
that affect the contract’s control flow. Furthermore, we show how Sereum performs attack
detection by building the dynamic call tree and propagating the set of write-locked storage
addresses.

Taint Engine
Taint tracking is a popular technique for analyzing data-flows in programs [SAB10]. First,
a taint is assigned to a value at a pre-defined program point, referred to as the so-called
taint source. The taint is propagated throughout the execution of the program, along with
the value it was assigned to. Taint sinks are pre-defined points in the program, e.g., certain
instructions or function calls. If a tainted value reaches a taint sink, the Sereum taint
engine will issue a report and invoke the attack detection module. Taint analysis can be
used for both static and dynamic data-flow analysis. Given that we aim to achieve run-time
monitoring of smart contracts, we leverage dynamic taint tracking in Sereum.

To do so, we modified the bytecode interpreter of geth, ensuring that it is completely
transparent to the executed smart contract. Our modified bytecode interpreter maintains
shadow memory to store taints separated from the actual data values, which is a common
approach for dynamic taint analysis. Sereum allocates shadow memory for the different
types of mutable memory in Ethereum smart contracts (see Section 3.2.1). The stack region
can be addressed at the granularity of 32-byte words. Thus, every stack slot is associated
with one or multiple taints. The storage address space is also accessed at 32-byte word
granularity, i.e., the storage can be considered as a large array of 32-byte words, where the
storage address is the index into that array. As a result, we treat the storage region similar
to the stack and associate one or multiple taints for every 32-byte word. However, unlike
the stack and storage address space, the memory region can be accessed at byte granularity.
Hence, we associate every byte in the memory address space with one or multiple taints. To
reduce the memory overhead incurred by the shadow memory for the memory region, we
store taints for ranges of the memory region. For example, if the same taint is assigned to
memory addresses 0 to 32, we only store one taint for the whole range. When only the byte
at address 16 is assigned a new taint, we split the range and assign the new taint only to the
modified byte.

1https://github.com/ethereum/go-ethereum
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We propagate taints through the computations of a smart contract. As a general taint
propagation rule for all instructions, we take the taints of the input parameters and assign
them to all output parameters. Since the EVM is a stack machine, all instructions either
use the stack to pass parameters or have constant parameters hard-coded in the code of
the contract. Hence, for all of the computational instructions, such as arithmetic and logic
instructions, the taint engine will pop the taints associated with the instruction’s input
parameters from the shadow stack, and the output of the instruction is then tainted with the
union of all input taints. In contrast, constant parameters are always considered untainted.
This ensures that we accurately capture data flows within the computations of the contract.
One exception to the general tainting rule is the SWAP instruction family, which swaps two
items on the stack. The taint engine will also perform an equivalent swap on the shadow
stack without changing taint assignments. Similarly, whenever a value is copied from one of
the memory areas to another area, we also copy the taint between the different shadow areas.
For instance, when a value is copied from the stack to the memory area, i.e., the contract
executes a MSTORE instruction, the taint engine will pop one taint from the shadow stack and
store it in the shadow memory region. The EVM architecture is completely deterministic;
smart contracts in the EVM can only access the blockchain state using dedicated instructions.
That is, no other form of input or output is possible. This allows us to completely model
the data flows of the system by tracking data flows at the EVM instruction level.

For reentrancy detection, as described in Section 6.3, we only need one type of taint
called DependsOnStorage. The taint source for this taint is the SLOAD instruction. Upon
encountering this instruction, the taint engine creates a taint, which consists of the taint
type and the address passed as an operand to the SLOAD instruction. The conditional JUMPI
instruction is used as a taint sink. Whenever such a conditional jump is executed, the taint
engine checks whether the condition value is tainted with a DependsOnStorage taint. If this is
the case, the taint engine will extract the storage address from the taint and add it to the set
of variables that influenced control-flow decisions. Our implementation supports an arbitrary
number of different DependsOnStorage taints. This allows Sereum to support complex code
constructs, e.g., control-flow decisions that depend on multiple storage variables.

Example for Taint Assignment and Propagation Figure 6.7 shows an example for taint
propagation in Sereum. The figure depicts a snippet of Ethereum bytecode instructions.
In this snippet of instructions, a data flow exists from the SLOAD instruction in line 1 to
the conditional jump instruction in line 4. The SLOAD instruction will load a value from the
storage memory region. The first and only parameter to SLOAD is the address in the storage
area. The JUMPI instruction takes two parameters: the jump destination and the condition
of whether the jump is to be performed. Recall that all instruction operands except for the
PUSH instruction are passed via the stack.

Figure 6.7 shows the state of the normal data stack and the corresponding shadow stack
below the snippet. SP denotes the stack pointer before the instruction is executed. The
SLOAD instruction will pop an address A from the stack, load the value V (referenced by A)
from storage, and then push it onto the stack. Since the SLOAD instruction is defined as a
taint source, the taint engine will create a new DependsOnStorage taint, which we denote as
τs. This taint is assigned to the value V by pushing it onto the shadow stack. Note that in
this case, V was not previously assigned a taint.
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1 SLOAD
2 LT
3 PUSH2 $dst
4 JUMPI

PC Instruction Stack (before Instruction) Shadow Stack (Taints) Taint Engine

1 SLOAD

A top

C
. . .

τ∅ top

τ ′

. . .

Create new DependsOnStorage taint τS as-
sociated with address A and push it onto the
shadow stack.

2 LT

V top

C
. . .

τS top

τ ′

. . .

Take the taints of the two instruction operands,
τS and τ ′ and assign both to b by moving them
to the same stack slot.

3 PUSH2 dst b = V < C top

. . .

τS, τ
′ top

. . .

Push empty taint for constant dst.

4 JUMPI

dst top

b = V < C
. . .

τ∅ top

τS, τ
′

. . .

Check the taints of the jump condition: If it
is tainted with a DependsOnStorage taint (τS),
then compute original address A from taint and
record that the variable at storage address A
influenced control-flow.

Figure 6.7: Taint propagation example for an EVM snippet that implements a high-level
solidity if-statement with a conditional branch. The SLOAD Instruction in line
1 indirectly influences the control-flow decision in the JUMPI instruction in line
4 as it is used as a parameter in the LT instruction. LT performs a less-than
comparison between the first and second operands on the stack. The taint engine
propagates the taints τ through the executed instructions and stores them on a
shadow stack. The condition for the conditional jump b depends on the values C
and the value V , which was loaded from storage address A. SP is the current
stack pointer, pointing to the top of the data stack.

The instruction LT (less-than) compares the value loaded from storage with the value C
that was previously pushed on the stack. This comparison decides whether the conditional
jump should be taken. Since the LT instruction takes two parameters from the stack (V and
C), the taint engine also pops two taints from the shadow stack (τs and τ ′). The result of
the comparison is then tainted with both taints (τs and τ ′), so the taint engine pushes a
merged taint (τs, τ ′) to the shadow stack.

The PUSH2 instruction then pushes a 2-byte constant to the stack, which is assigned an
empty taint τ∅. Finally, the JUMPI instruction takes a code pointer (dst) and a boolean
condition as parameters from the stack. Since JUMPI is a taint sink, the taint engine will
check the taints associated with the boolean condition. If this value is tainted with the τS

taint, it will compute the original storage address A based on the taint. At this point, we
know that the value at storage address A influenced the control-flow decision. Hence, we
add it to the set of control-flow influencing storage addresses, which is passed to the attack
detection component later on.
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Using the taint engine, Sereum records the set of storage addresses that reference values
that influence control-flow decisions. This set of addresses is then forwarded to the attack
detection component once the contract finishes executing.

Attack Detection
We lock the write access to storage addresses that influence control-flow decisions to detect
reentrancy attacks. During the execution of a contract, the taint engine detects and records
storage addresses, which are loaded and then influence the outcome of a control-flow decision.
As described in Section 6.3, Sereum uses a dynamic call tree to compute the set of variables
that are locked for writing. Sereum builds a so-called dynamic call tree during the execution
of a transaction. This tree contains a node for every invocation of a contract during the
transaction. The dynamic call-tree records how the call stack of the transaction evolves over
time, i.e., it is essentially a combination of all call stacks at any point in time combined into a
single data structure. The ordering of the child nodes in the dynamic call tree corresponds to
the order of execution during the transaction. The depth of the node in the tree corresponds
to the depth in the call stack, i.e., the time when a contract was invoked. Sereum updates
the dynamic call tree whenever a contract issues or returns from an external call. When the
called contract completes execution, the set of control-flow influencing variables is retrieved
from the taint engine and stored as associated data in the corresponding node of the call
tree.

Sereum locks only the set of variables used during an external call as part of a control-
flow decision or as a parameter to another call. We call this type of variable a critical
variable. To compute this set, Sereum traverses the dynamic call tree starting from the
node corresponding to the current execution. During traversal, Sereum searches for nodes,
which were part of executions of the same contract. When Sereum finds such a node,
it retrieves the set of critical variables previously recorded by the taint engine. Sereum
performs this traversal and an update of the set of locked critical variables after every
external call. Whenever a contract attempts to write to the storage area, i.e., executes the
SSTORE instruction, Sereum intercepts the write and first checks whether the address is
locked. If the variable is locked, Sereum reports a reentrancy attack and then aborts the
execution of the transaction. This results in the EVM unwinding all state changes and Ether
transfers.

6.5 Evaluation
In this section, we evaluate the effectiveness and performance of Sereum based on existing
Ethereum contracts deployed on the Ethereum mainnet. Since our run-time analysis is
transparently enabled for each execution of a contract, we re-execute the transactions that
are stored on the Ethereum blockchain. We compare our findings with state-of-the-art
academic analysis tools such as Oyente [Luu+16] and Securify [Tsa+18]. The version of
Securify, which was available at the time the study was conducted, was only available through
a web interface and did not support submitting bytecode contracts anymore. Therefore,
we were not able to test all contracts with Securify. Furthermore, we do not compare with
Mythril [Conc] and Manticore [Mos+19] as they follow the detection approach of Oyente
(symbolic execution). We also conduct experiments based on the three new reentrancy attack

139



Chapter 6 Mitigation of Reentrancy Attacks

patterns we introduced in Section 6.1—effectively demonstrating that only Sereum is able
to detect them all.

6.5.1 Identifying Attacks on Mainnet
We first connect our Sereum client with the public Ethereum network to retrieve all
the existing blocks while keeping as many intermediate states in the cache as possible.
Transaction re-execution requires the state of the context block, which is saved as nodes in
the state Patricia tree of the Ethereum blockchain. We run the geth (Go Ethereum) client
with the options sync mode full, garbage collection mode archive, and assign as much memory
as possible for the cache. During the block synchronization process, the taint tracking is
disabled to ensure that the client preserves the original state at each block height.

We then replay the execution of each transaction in the blockchain available to us. We
performed two evaluation runs of Sereum. The first initial evaluation re-executed all blocks
up to block number 4 500 000 (November, 6th 2017). However, this version of Sereum did
not yet support detection of unconditional reentrancy. In a second run, we re-executed all
blocks until block number 9 069 000 (December, 8th 2019). We perform a more detailed
analysis of the contracts discovered in the first run until block number 4 500 000. Note
that we skip those blocks which were targets of denial-of-service attacks as they incur high
execution times of transactions [Wil16]. We replay the transactions using the debug module
of the geth RPC API. This ensures that our replay of transactions does not affect the public
saved blockchain data. We also retrieve an instruction-level trace of the executed instructions
and the corresponding storage values during the transaction execution. This allows us to
step through the contract’s execution at the granularity of instructions.

We enable the taint tracking option in Sereum during the transaction replay to evaluate
whether a transaction triggers a reentrancy attack pattern. If a reentrancy attack is detected,
an exception will be thrown, the execution of the transaction gets invalidated, and an error
will be reported via the API. Sereum will then return the instruction trace up to the point
where the reentrancy attack is detected.

All in all, we re-executed 597 629 235 transactions, out of which Sereum flags 312 617
(0.052 %) of them as reentrancy violation. These transactions target 368 different accounts.
However, we identify only 250 hash-distinct contracts in this set. Furthermore, the majority
of transactions are caused by very few contracts. 77.38 % of the transactions are due to 3
different contracts.

In the first part of the evaluation, which covers up to block number 4 500 000, we discovered
that many contracts that we flag as vulnerable are created by the same account and share the
same contract code but are only instantiated with different parameters. We consider these
contracts as being identical. More specifically, we found three groups of identical contracts
involving 21, 4, and 3 contracts, respectively. Furthermore, we identify many contracts that
are essentially duplicates but feature a different code hash. These contracts execute the
same sequence of instructions that only differ in the storage addresses. We consider these
contracts as alike contracts. In total, we found two groups of similar contracts of size 10 and
3, respectively. As a result, Sereum detected 16 identical or alike contracts that are invoked
by transactions matching the reentrancy attack pattern. For 6 out of these 16 contracts,
the source code is available on http://etherscan.io, thus allowing us to perform a detailed
investigation on why they have been flagged. In the remainder of this section, we present
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Figure 6.8: The top plot shows the number of detected transactions triggering the reentrancy
vulnerability in the flagged contracts. Each contract is categorized by its false
positive type described in Section 6.6.1. Type I corresponds to “lack of field-
sensitivity”, Type II “storage deallocation”, Type III “constructor callbacks”,
Type IV “tight contract coupling”, Type V “manual reentrancy locking”, and U
for Unknown. The contract name is shown for those where source code is avail-
able. Contracts in parenthesis are known token contracts at http://etherscan.io
although source code is not available. The bottom plot shows how the tools
Oyente [Luu+16] and Securify [Tsa+18] handle this subset of contracts. Since
the last public version of Securify requires source code, we depict a cross for
those (bytecode) contracts we were not able to evaluate.

our manual analysis of these contracts. We check whether a violating transaction resembles
a reentrancy attack pattern and whether the code of the concerned contract suffers from
reentrancy vulnerability that could potentially be exploited.

For contracts with Solidity source code, we perform source code reviews and check the
contract logic that is triggered by the transaction input to identify reentrancy attacks
manually. We use the transaction trace as a reference to follow the control flow and observe
external calls to other contracts or accounts. For contracts with no source code, we cannot
fully recover the semantics of the contract for detected inconsistent state updates. In this
case, we use the transaction trace and the ethersplay [Cry] disassembler tool to partially
reverse-engineer the contracts.

Based on our investigation up to block number 4 500 000, we can confirm that two
contracts were actually exploited by means of a reentrancy attack. One of them is the
known “The DAO” [DAO] attack attributing to 2294 attack transactions. Note that
we consider TheDarkDAO [dDAO] and “The DAO” [DAO] contract as being identical.
The second case involves a quite unknown reentrancy attack. It occurred at contract
address 0xd654bDD32FC99471455e86C2E7f7D7b6437e9179, and we attributed 43 attack
transactions to this incident. After reviewing blog posts and GitHub repositories related to
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this contract [MKRh; MKRr], we discovered that this contract is known as DSEthToken
and is part of the maker-otc project. This series of attack transactions were initiated by
the contract developers after they discovered a reentrancy vulnerability. Since the related
funds were drained by (benign) developers, the Ethereum community paid less attention to
this incident. Based on our manual analysis of the contracts up to block number 4 500 000,
we can approximate the rate of false alarms of Sereum. We compute a false alarm rate of
0.06 % across all the re-run transactions up until block number 4 500 000. Figure 6.8 shows
the number of transactions that match the reentrancy attack pattern flagged by Sereum.
Some of the results reflect false positives, which we discuss in detail in Section 6.6.1.

We also observe that Oyente flagged 8 of these contracts as vulnerable to reentrancy
attacks. Some contracts were not detected by Oyente since Oyente does not consider any of
the advanced reentrancy attacks we discussed in Section 6.1. During our analysis, we noticed
that in some cases, Oyente warned about reentrancy problems, which are only exploitable
with a cross-function reentrancy attack. However, we believe this is due to Oyente incorrectly
detecting a same-function reentrancy vulnerability. Apart from the six false alarms in our
test set, the analysis performed by previous work [GMS18; Tsa+18] demonstrated that
reentrancy detection in Oyente is quite imprecise and features a high number of false alarms
and also missed bugs.

With respect to Securify, the latest version of Securify requires the source code of a contract,
thereby impeding us from evaluating all contracts. Therefore, we have only examined the
contracts whose source code is available. Securify defines a very conservative violation
pattern for reentrancy detection that forbids any state update after an external call.

Detecting Further Attacks In our second evaluation run up to block number 9 069 000,
Sereum identifies several additional reentrancy attacks. For example, Sereum detects
the known attack against the SpankChain LedgerChannel contract [Spa18]. Furthermore,
Sereum correctly identifies several attacks against test contracts that are intentionally
vulnerable to reentrancy but were deployed to the main Ethereum blockchain nevertheless.

Torres et al. [TSS19] studied the phenomenon of honeypot contracts. These contracts
seem to be vulnerable according to the source code submitted to the etherscan service, but
their real deployments break exploitation. Such honeypot contracts are typically a form of
scam because they require an initial investment of Ether before attempting exploitation.
Essentially, the creator of the honeypot scams malicious actors that attempt to exploit
simple vulnerabilities. We identify several attempted attacks against honeypot contracts
with Sereum. Although the honeypot contracts thwart exploitation themselves, Sereum’s
reentrancy locking still identifies and flags the attempted reentrant transaction.

6.5.2 Detection Capabilities
We evaluated our new reentrancy attack patterns (see Section 6.2). For each contract, we
crafted one attack transaction for Sereum to perform the check: Sereum successfully detects
all attack transactions to the three vulnerable contracts. Table 6.1 shows an overview of
various tools tested against the vulnerable contracts for the new reentrancy attack patterns.
As discussed earlier, neither Oyente, Securify, nor Manticore can detect delegated and
create-based reentrancy vulnerabilities. While Oyente does not detect the cross-function
reentrancy attack, Securify is able to detect it due to its conservative policy. Similarly,
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Mythril detects cross-function and create-based reentrancy because it utilizes a similar policy
to Securify, which is extremely conservative and, therefore, also results in a high number of
false positives. ECFChecker [Gro+18] detects the cross-function reentrancy attack. However,
during our evaluation, we crafted another contract, which is vulnerable to cross-function
reentrancy, but was not detected by ECFChecker. Recall that the delegated reentrancy
attack cannot be detected by any existing static offline tool as it exploits a dynamic library
that is either not available at analysis time or might be updated in the future. However, a
dynamic tool, such as ECFChecker or Sereum, can detect the delegated reentrancy attack.
The create-based reentrancy attack is not detected by any of the existing analysis tools, as
the instruction CREATE is currently not considered as an external call by none of the existing
analysis tools.

In general, we argue that Sereum offers the advantage of detecting actual reentrancy
attacks and not just possible vulnerabilities. In contrast to previous work on static analy-
sis [Luu+16; Tsa+18], this makes it feasible for us to determine exactly whether an alarm is
a true or false alarm. Moreover, some of the contracts are not flagged by Oyente and Securify
as these do not cover the full space of reentrancy attacks. As such, they naturally do not
raise false alarms for contracts that violate reentrancy patterns that are closely related to
the delegated and create-based reentrancy (i.e., Type III and IV).

Table 6.1: Comparison of reentrancy detection tools subject to our test cases for the advanced
re-entrancy attack patterns. Tools marked with  support detecting this type
of re-entrancy, while tools marked with # do not support detecting this type of
re-entrancy. Tools with an overly restrictive policy are marked with G#.

Tool Version Cross-Function Delegated Create-based Unconditional
Oyente 0.2.7 # # #  
Mythril 0.19.9 G# # G#  
Securify 2018-08-01 G# # #  
Manticore 0.2.2  # #  
ECFChecker geth1.8port   #  
Sereum v1    #
Sereum v2     
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6.5.3 Performance and Memory Overhead
At the time of evaluation, there were no benchmarks, consisting of realistic contracts, available
for EVM implementations. As such, we measured the performance overhead by timing the
execution of a subset of blocks from the Ethereum blockchain. We sampled blocks from the
blockchain, starting from 4 600 000, 4 500 000, 4 400 000, 4 300 000, and 4 200 000, we use 10
consecutive blocks each. We re-execute those blocks in batch while accounting only for the
EVM’s execution time. We perform one run with plain geth, on which Sereum is based,
and one with Sereum with attack detection enabled. For the performance evaluation, we
do not consider those transactions, which Sereum flags as a reentrancy attack. Sereum
aborts those transactions early, which can result in a much shorter execution time compared
to the normal execution.

Table 6.2 shows the runtime measurements of geth and Sereum in comparison. Sereum
incurs an average runtime overhead of 9.6 %. We measured the performance overhead of
Sereum, compared with plain geth when running 50 blocks in batch. Here, we average the
runtime over 10 000 runs of the same 50 blocks. We benchmarked on an 8-core Intel(R)
Xeon(R) CPU E5-1630 v4 with 3.70GHz and 32 GB RAM. Sereum incurred a mean overhead
of 217.6 ms (σ = 100.9 ms) or 9.6 %. While measuring the timing of the executed transactions,
we additionally measured the memory usage of the whole Ethereum client. We used Linux
cgroups to capture and measure the memory usage of Sereum and all subprocesses. We
sample the memory usage every second while performing the runtime benchmarks. During
our benchmark, Sereum required on average 9767 Mbyte of memory with active attack
detection, while the plain geth required 9252 Mbyte.

This shows that Sereum can effectively detect reentrancy attacks with negligible overhead.
In fact, the actual runtime overhead is not noticeable. The average time until the next block
is mined in 14.5 seconds and contains 130 transactions on average (between Jan 1, 2018
and Aug 7, 2018). Given our benchmark results, a rough estimate of EVM execution time
per block is 0.05 seconds, with Sereum adding 0.005 seconds overhead. Compared to the
total block time, the runtime overhead of Sereum is therefore not noticeable during normal
usage.

Table 6.2: Performance overhead of Sereum version 1, compared with the plain go-ethereum
client when running 50 blocks in batch and averaged over 10000 repeated trials.

Average σ

go-ethereum Client 2277.0 ms 146.7 ms
Sereum 2494.5 ms 174.8 ms
Overhead 217.6 ms 100.9 ms
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6.6 Limitations
In this chapter, we discuss the limitations of Sereum. During our thorough evaluation, we
discovered several patterns that caused false alarms. We analyze those in detail and discover
several code patterns that tend to cause false alarms. We describe these false alarm patterns
in Section 6.6.1. Some of these false alarm patterns, such as storage deallocation, can also be
the cause of true reentrancy attacks. As such, some patterns must be accepted as a source
of false alarms. We suggest that smart contract authors instead avoid such patterns as they
hinder analysis. Other patterns, like the lack of field sensitivity, are something that can be
improved upon with better analysis, e.g., taint tracking at byte granularity. Finally, we also
discuss a recently discovered reentrancy bug that is missed by Sereum in Section 6.6.2.

6.6.1 Analysis of False Alarms
While investigating the contracts that triggered the reentrancy detection of Sereum, we
discovered code patterns in deployed contracts (see Figure 6.8), which are challenging to
accurately handle for any off-line or run-time bytecode analysis tool. These patterns are the
root cause for the rare false alarms we encountered during our evaluation of Sereum.

However, since these code patterns are not only challenging for Sereum but for other
existing analysis tools such as Oyente [Luu+16], Mythril [Conc], Securify [Tsa+18], or any
reverse-engineering tools operating at EVM bytecode level [Cry; Zho+18], we believe that a
detailed investigation of these cases is highly valuable for future research in this area. Our
investigation also reveals for the first time why existing tools suffer from false alarms when
searching for reentrancy vulnerabilities. In what follows, we reflect on the investigation of
the false positives that we encountered.

I. Lack of Field-Sensitivity on the EVM Level Some false positives are caused by a lack of
information on fields at the bytecode level for data structures. Solidity supports the keyword
struct to define a data structure that is composed of multiple types, e.g., Figure 6.9 shows
a sample definition of a struct S of size 32 bytes. Since the whole type can be stored within
one single word in the EVM storage area, accessing either of the fields a or b ends up accessing
the same storage address. In other words, on the EVM bytecode level, the taint-tracking
engine of Sereum cannot differentiate the access to fields a and b. This leads to a problem
called over-tainting, where taints spread to unrelated values and, in turn, cause false positives.
Notice that this problem affects all analysis tools working on the EVM bytecode level. Some
static analysis tools [Gre+19; Sui17] use heuristics to detect the high-level types in Ethereum
bytecode. The same approach could be used to infer the types of different fields of a packed
data structure. However, for a run-time monitoring solution, heuristic approaches often
incur unacceptable runtime overhead without guaranteeing successful identification. To
address this type of false positive, one would either require the source code of the contract
or additional type information on the bytecode level.

II. Storage Deallocation The EVM storage area is basically a key-value store that maps
256-bit words to 256-bit words. The EVM architecture guarantees that the whole storage
area is initialized with all-zero values and is always available upon request. More specifically,
no explicit memory allocation is required, while memory deallocation simply resets the value

145



Chapter 6 Mitigation of Reentrancy Attacks

1 struct S {
2 int128 a; // 16 bytes
3 int128 b; // 16 bytes
4 } // total: 32 bytes
5 // struct access in solidity, e.g.
6 S.a = 0x42;
7 // compiles down to code roughly equivalent to the following evm assembly code.
8 assembly {
9 // load b

10 b := and(sload(S), ((2 << 127) - 1))
11 // write new value for a and old value of b
12 sstore(S, or((0x42 << 128), b))
13 }

Figure 6.9: Solidity struct, where both a and b are at the same storage address. Therefore,
any update to a or b includes loading and writing also the other.

1 mapping (uint => uint) M; // a hash map
2 // delete entry from mapping
3 delete M[id];
4 // on the EVM level this is equivalent to
5 M[id] = 0;

Figure 6.10: Solidity storage delete is equivalent to storing zero.

to zero. This poses a problem at the bytecode level: a memory deallocation is no different
from a state update to value 0, though the semantics differ, especially when applying the
reentrancy detection logic. Consider the example of a map M in Figure 6.10. When the
contract deallocates the element indexed by id from M (delete from a map), it basically has
the same effect as setting the value of M [id] to 0 at the bytecode level. Here, the Solidity
compiler will emit nearly identical bytecode for both cases. We encountered a contract2

presenting this case which leads to a false alarm.
However, this pattern does not necessarily always lead to false alarms. In fact, the

very same pattern can also lead to real reentrancy attacks. For example, the SpankChain
LedgerChannel [Spa18] was vulnerable to a reentrancy bug that was because of this pattern.
Figure 6.11 shows the vulnerable function. As such, we conclude that while this is a common
pattern for false alarms, it is important to cover this case for accurate reentrancy detection.
In fact, any false alarm due to this pattern is a sign of bad coding practices and also potential
reentrancy attacks.

III. Constructor Callbacks Sereum considers calls to the constructor of contracts to be
the same as calls to any other external contract. This allows Sereum to detect create-based
reentrancy attacks. However, detecting create-based reentrancy comes at the cost of some
false positives. During our evaluation3, we noticed that sub-contracts created by other

2Contract address: 0x6777c314b412f0196aca852632969f63e7971340
3Contract address 0xFBe1C2a693746Ccfa2755bD408986da5281c689F
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1 function LCOpenTimeout(bytes32 _lcID) public {
2 /* ... */
3 if (Channels[_lcID].initialDeposit[0] != 0) {
4 // ETHER TRANSFER
5 Channels[_lcID].partyAddresses[0].transfer(
6 Channels[_lcID].ethBalances[0]
7 );
8 }
9 if (Channels[_lcID].initialDeposit[1] != 0) {

10 // EXTERNAL CALL
11 require(
12 Channels[_lcID].token.transfer(
13 Channels[_lcID].partyAddresses[0],
14 Channels[_lcID].erc20Balances[0]
15 ),
16 "CreateChannel: token transfer failure"
17 );
18 }
19

20 /* ... */
21

22 // STATE UPDATE
23 delete Channels[_lcID];
24 }

Figure 6.11: Vulnerable function of the SpankChain LedgerChannel contract that was ex-
ploited based on the fact that the delete is performed as the last action. The
function repeatedly transfers Ether when reentered because the channel struc-
ture is not deleted before the external call.

contracts, tend to call back into their parent contracts. Usually, this is used to retrieve
additional information from the parent contract: the parent creates the sub-contract, the
sub-contract re-enters the parent contract to retrieve the value of a storage variable, and
that same variable is then updated later by the parent. Consider the example in Figure 6.12,
where contract A creates a sub-contract B. While the constructor executes, B re-enters the
parent contract A, which performs a control-flow decision on the funds variable. This results
in Sereum locking the variable funds. Since no call to another potentially malicious external
contract is involved, this example is not exploitable via reentrancy. However, Sereum detects
that the funds variable is possibly inconsistent due to the deferred state update. A malicious
contract B could have re-entered A and modified the funds variable in the meantime.

We argue that this constructor callback pattern should be avoided by contract developers.
All necessary information should be passed to the sub-contract’s constructor such that no
reentrancy into the parent contract is needed. This not only avoids false positives in Sereum
but also decreases the gas costs. External calls are one of the most expensive instructions in
terms of gas requirements, which must be paid for in Ether and, as such, should be avoided
as much as possible.
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1 contract A {
2 mapping (address => uint) funds;
3 // ...
4 function hasFunds(address a) public returns(bool) {
5 // funds is used for control-flow decision
6 if (funds[a] >= 1) { return true; }
7 else { return false; }
8 }
9 function createB() {

10 B b = new B(this, msg.sender);
11 // ...
12 // update state (locked due to call to hasFunds)
13 funds[msg.sender] -= 1;
14 }
15 }
16 contract B {
17 constructor(A parent, address x) {
18 // call back into parent
19 if (parent.hasfunds(x)) { /* ... */ }
20 }
21 }

Figure 6.12: Constructor callback: The sub-contract B calls back (re-enters) into the has-
Funds function of the parent contract A. This type of false positive is similar
to the create-based reentrancy attack pattern.

IV. Tight Contract Coupling During our evaluation, we noticed a few cases where multiple
contracts are tightly coupled, resulting in overly complex transactions, i.e., transactions that
cause the contracts to be re-entered multiple times into various functions. This suggests that
these contracts have a strong interdependency. Since Sereum introduces locks for variables
that can be potentially exploited for reentrancy and is not aware of the underlying trust
relations among contracts, it reports a false alarm when a locked variable is updated. We
consider these cases as an example of bad contract development practice since performing
external calls is relatively expensive in terms of gas, and as such also Ether, and could be
easily avoided in these contracts. That is, if trusted contracts have an internal state that
depends on the state of other trusted contracts, we suggest developers keep the whole state
in one contract and use safe library calls instead.
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1 mapping (address => uint) private balances;
2 mapping (address => bool) private disableWithdraw;
3 // ...
4 function withdraw() public {
5 1 if (disableWithdraw[msg.sender] == true) {
6 // abort immediately and return error to caller
7 revert();
8 }
9 uint amountToWithdraw = balances[msg.sender];

10

11 2 disableWithdraw[msg.sender] = true;
12 3 msg.sender.call.value(amountToWithdraw)();
13 4 disableWithdraw[msg.sender] = false;
14 // state update after call
15 userBalances[msg.sender] = 0;
16 }
17 // ...

Figure 6.13: Manual locking to guard against reentrancy.

V. Manual reentrancy Locking To allow expected and safe reentrancy, a smart contract
can manually introduce lock variables (i.e., a mutex) to guard the entry of the function. In
Figure 6.13), disableWithdraw enables a lock at ➁ before making an external call at ➂ .
The lock is reset after the call at ➃ . This prevents any potential re-entrance at ➀ . Hence,
even though the balance is updated after the external call, the contract is still safe from
reentrancy attacks.

However, the access pattern to these lock variables during reentrant calls matches an attack
pattern, i.e., the internal state (the lock variable) that affects the control flow in subsequent
(reentered) invocation of the contract, is updated subsequently (at ➃ ). Operating at the
bytecode level, it is challenging to distinguish the benign state updates of locks from those
of critical variables such as balances. Note that manual locking is an error-prone approach
as it could allow an attacker to reenter other functions of the same contract unless the entry
of every function is guarded by the lock. In contrast, Sereum automatically introduces
locks for all possibly dangerous variables (detected via taint tracking) across all functions,
thereby removing the burden from developers to manually determine all possible vulnerable
functions and critical variables.

VI. Bounds-Checking of Dynamic Arrays One of the largest sources of false alarms we
discovered during our extended evaluation was the bounds-checking code of variably-sized
arrays. Most notably, the popular BlockChainCuties contract was responsible for many
false alarms. These bounds-checks are generated by the Solidity compiler and are not
directly visible to the developer. Figure 6.14 shows the relevant code-snippets from the
BlockChainCuties contract. The contract is really split into two contracts, similar to the
tight contract coupling issue (issue IV.), and there are frequent callbacks between the
two contracts. Most importantly, the second contract will perform a call that triggers a
bounds check before accessing an array. On the level of the Solidity source code, there is
no conditional branch visible. However, on the EVM level, Solidity generates a conditional
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1 // reentrant call to this functions sets a write-lock
2 function getGeneration(uint40 _id) public view
3 returns (uint16 generation)
4 {
5 // solidity generates a bounds-check here, which is
6 // implemented as an EVM-level jump.
7 Cutie storage cutie = cuties[_id];
8 generation = cutie.generation;
9 }

10 // [...]
11 // ...which is violated when the array is modified later
12 uint256 newCutieId256 = cuties.push(_cutie) - 1;
13 // [...]

Figure 6.14: Reentrant callback to the getGeneration function in the BlockChainCuties
contract, will set a write-lock that is later violated.

branch for the bounds-check. The generated code loads the length of the array from the
storage area, compares it to the index passed by the user, and if it is out of bounds, the
conditional branch will jump to the error reporting code. On the EVM level, there is no
difference between the length and a storage value with the semantics of a user balance. As
such, Sereum sets a write-lock on the length of the dynamic array. However, if the array is
later modified, Sereum will report a potential reentrancy attack. This pattern is particularly
tricky to assess because there is no clear root cause for the write-lock on the source code
level.

6.6.2 Missed Reentrancy Patterns
While most reentrancy attacks attempt to bypass a security check, i.e., something represented
as a conditional branch, we already discussed an outlier to this rule: unconditional reentrancy.
Sometimes, even critical functions are so small that they can be implemented without any
conditional branch at all. Similar to this pattern, Bose et al. [Bos+22] identified a reentrancy
pattern that is quite similar to traditional double-fetch vulnerabilities [Wan+17]. Figure 6.15
show an example for such a vulnerability [Bos+22], which we accordingly call double-fetch
reentrancy. Here, there are two consecutive uses, i.e., read accesses, of a storage variable,
and between both uses, there is an external call. The implicit assumption is that the value
obtained by the storage reads is the same. During normal execution, this is a reasonable
assumption if there is no write to that storage address. However, since there is an external
call between both reads, this assumption can be violated.

In the example in Figure 6.15, the code of the victim fetches the variable twice, assuming
it has the same value. However, during the external call, the attacker maliciously reenters
the victim contract in the updateSplit function. Now the value of the split changed, and the
attacker is able to manipulate the following computation of the splits to gain Ether.

This attack remains undetected by Sereum. The problem is that Sereum utilizes a
different model of reentrancy: one that focuses on write access. Sereum assumes that the
reentrant call will set a write-lock due to a storage read, and the non-reentrant call will
violate the write-lock with a storage write operation. However, in this case, the storage write
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1 // [Step 1]: Set split of 'a' (id = 0) to 100(%)
2 // [Step 4]: Set split of 'a' (id = 0) to 0(%)
3 function updateSplit(uint id, uint split) public{
4 require(split <= 100);
5 splits[id] = split;
6 }
7

8 function splitFunds(uint id) public {
9 address payable a = payee1[id];

10 address payable b = payee2[id];
11 uint depo = deposits[id];
12 deposits[id] = 0;
13

14 // [Step 2]: Transfer 100% fund to 'a'
15 // [Step 3]: Reenter at updateSplit
16 // first load from storage
17 a.call.value(depo * splits[id] / 100)("");
18

19 // [Step 5]: Transfer 100% fund to 'b'
20 // second load from storage: DOUBLE-FETCH
21 b.transfer(depo * (100 - splits[id]) / 100);
22 }

Figure 6.15: Example for a double-fetch reentrancy vulnerability [Bos+22]

operation is performed during a reentrant call, while the storage read operation is in the
non-reentrant call.

6.7 Related Work
Reentrancy has emerged as one of the major challenges for smart contract security. Years
after “The DAO” incident, we still observe major incidents and losses due to reentrancy
bugs [REVST; CREAM; Tor+21b]. Naturally, many different analysis methods to identify
reentrancy issues were proposed. The types of methods to tackle the reentrancy problem
range from formal verification, static analysis, bounded model checking, symbolic execution,
and fuzzing.

Zeus [Kal+18] translates Solidity contract into the LLVM intermediate language and then
utilizes a stock verification framework, in this case Seahorn. The verification framework
then identifies potential violations of the assertions inserted based on a custom security
policy. Zeus also identifies reentrancy attacks, but it only scales to the same-function
reentrancy pattern. The problem is that it does not explicitly model reentrancy during
the verification process but works around it by inserting spurious calls into the analyzed
LLVM bitcode for analysis purposes. This approach does not scale to other reentrancy
patterns due to combinatorial explosion. However, especially newer reentrancy attacks are
often due to cross-function attacks [REVST; CREAM; Tor+21b]. In contrast, Schneidewind
et al. [Sch+20b] provides a provably sound static analysis framework tailored towards the
EVM. This static analysis framework allows to verify the single entrancy property for EVM
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smart contracts. Similarly, KEVM [Hil+17] defines executable formal semantics for EVM
bytecode in the K-framework and presents an accompanying formal verification tool.

Securify [Tsa+18] is a static analysis tool that infers semantic facts about smart contracts
using a Datalog solver [Sch+16]. The Datalog solver then attempts to show whether a
predefined compliance pattern or violation pattern is satisfied, thereby proving the absence or
presence of certain vulnerabilities. To detect reentrancy, Securify uses the no-write after-call
analysis. Essentially, this type of analysis enforces a variant of the checks-effects-interactions
pattern. Securify will flag any state write after an external call as potential reentrancy.
Naturally, this will lead to many false alarms in complex contracts, where this pattern is
often impossible to avoid. For example, it would not be practical to model create-based
reentrancy with this security policy. Typically, the parent contract must save the address
of the newly created child contract. Naturally, this is only possible after issuing the create
instruction, and also after the potential reentrant call, as the create instruction itself will
return the address. Even though the no write after call security policy exhibits a high
number of false alarms, this type of analysis is used in various analysis tools [FGG19; Conc].

Two hybrid fuzzing tools utilize dynamic analyses similar to Sereum’s policy to determine
potential reentrancy. Confuzzius identifies a sequence of instructions in an execution trace:
(1) a SLOAD, (2) an external call, and (3) a SSTORE to the same address as the prior SLOAD.
This detection method is more similar to Sereum than forbidding all writes after calls.
Similar to Sereum, Confuzzius attempts to detect writes that could cause inconsistent
state during reentrant executions. However, Confuzzius does not track data dependencies as
does Sereum. While this allows Confuzzius to naturally cover unconditional reentrancy, it
does so at the cost of a higher number of false alarms. Very similar to Sereum, Smartian
leverages a taint analysis during hybrid fuzzing and concolic execution to identify reentrancy
bugs [Cho+21]. Smartian tracks state variables using taint analysis that affect ether transfers.
If the state variable is updated after the call, Smartian reports a reentrancy bug. However,
Smartian’s reentrancy detection must be seen as an extension to the one used by Confuzzius,
as it does not require an actual reentrant execution to trigger. In contrast, Sereum will
only report reentrancy if it actually observes a reentrant execution.

ECFChecker [Gro+18] is a dynamic analysis tool that does not detect reentrancy vul-
nerabilities, but defines a new attribute, Effectively Callback Free (ECF). An execution is
ECF when there exists an equivalent execution without callbacks that can achieve the same
state transition. If all possible executions of a contract satisfy ECF, the whole contract
is considered as featuring ECF. Non-ECF contracts are thus considered as vulnerable to
reentrancy, as callbacks can affect the state transition upon contract execution. Proving the
ECF property with static analysis was shown to be undecidable in general. However, Gross-
man et al. [Gro+18] also developed a dynamic checker that can show whether a transaction
violates the ECF property of a contract. ECFChecker has been developed concurrently to
Sereum and was, to the best of our knowledge, the only other runtime monitoring tool at
that time. Recently, the ECF property was adapted by the same authors to a constructive
version that can be statically verified [Alb+20]. However, the ECF approach does not cover
the full space of reentrancy attacks and misses several reentrancy patterns. Furthermore, it
is not clear whether the ECF property also covers compositional reentrancy attacks that
chain across multiple contracts [Cec+21].

Bose et al. [Bos+22] introduce the symbolic execution tool Sailfish that is tailored specif-
ically to uncovering state inconsistency bugs. The Sailfish analyzer summarizes both
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reentrancy and transaction-order dependence under state inconsistency. Sailfish combines
static data-dependency analysis, value-summary analysis, and symbolic execution to identify
state inconsistency.

6.8 Conclusion
Reentrancy attacks exploit the inconsistent internal state of smart contracts during unsafe
reentrant executions, allowing an attacker, in the worst case, to drain all available assets
from a smart contract. Previously it was thought that advanced offline analysis tools could
accurately detect these vulnerabilities. However, as we show, these tools can only detect
basic reentrancy attacks and fail to accurately detect new reentrancy attack patterns, such
as cross-function, delegated, and create-based reentrancy. Furthermore, it remains an open
research direction on how to protect existing contracts as smart contract code is supposed
to be immutable and contract creators are anonymous, which impedes responsible disclosure
and deployment of patched contract. We discuss a direction forward in this area in Chapter 7.

To address the particular ecosystem of smart contracts, we introduce a novel run-time
smart contract security solution, called Sereum, which exploits dynamic taint tracking to
monitor data-flows during smart contract execution to automatically detect and prevent
inconsistent state and thereby effectively prevent basic and advanced reentrancy attacks
without requiring any semantic knowledge of the contract. By running Sereum on more
than 80 million Ethereum transactions involving more than 90 000 contracts, we show that
Sereum can identify and prevent reentrancy attacks in deployed contracts with negligible
overhead.

Limitation and Future Work Sereum is designed to run in enforcement mode, protecting
existing contracts, when Sereum is integrated into the blockchain ecosystem. However,
Sereum can also be utilized by smart contract developers in order to identify attacks against
their contracts and patch them accordingly. Namely, Sereum can also be executed locally
by contract developers that are interested in ensuring the security of their deployed contracts.
In fact, this mode is most useful today, as it is unlikely that a tool like Sereum will be
integrated into the default Ethereum execution environment. The problem here is that
Sereum changes the semantics of the execution environment in rather surprising ways,
as we identify in our analysis of false alarms in Section 6.6.1. The fuzzer EF�CF, which
we describe in Chapter 5, is the first fuzzing tool that generates and concretely executes
reentrant transactions. However, EF�CF does not feature explicit detection of reentrancy
issues. Instead, it relies on other bug oracles, such as Ether gains, to identify reentrancy
vulnerabilities. While this leads to very accurate results, it does not uncover code quality
issues that currently cannot be exploited but should be removed to follow the defense-in-
depth principle. To detect reentrancy, Sereum must observe concrete reentrant transactions,
something provided by EF�CF. As such, it would be an interesting future research direction
to pair the taint tracking featured in Sereum with the transaction generator of EF�CF to
also detect potential reentrancy bugs improving the code quality of smart contracts. The
taint tracking code in Sereum does not add significant overhead with respect to the baseline
interpreter. However, for usage in EF�CF, the taint-tracking engine must be evaluated with
respect to the overhead to the high throughput execution approach featured in EF�CF. As

153



Chapter 6 Mitigation of Reentrancy Attacks

such, it remains an open question on how to integrate taint-tracking-based detection into a
high-performance Ethereum fuzzer.

Recently it was found that Sereum does not identify all types of reentrancy. Bose
et al. [Bos+22] identify an example of a reentrancy bug that is not picked up by Sereum,
a pattern we call double-fetch reentrancy. Sereum’s model for automatically performing
locking does not match this reentrancy pattern. While the taint-tracking approach of
Sereum is potent enough to identify various reentrancy issues at runtime, it is not clear
how to extend Sereum to capture also this type of attack. Sereum’s locking model could
be extended to issue read-locks on reentrant write accesses, but it is unclear that this will
not impact regular executions even further. As with any mitigation, the number of false
alarms of such an extension to Sereum would need to be investigated to assess the overall
usefulness of the defense.

We believe that automatic source-level hardening of smart contracts is a viable alternative
approach to securing smart contracts against reentrancy attacks [Gie+22]. Source-level
hardening is fully compatible with the existing Ethereum infrastructure and tooling and
can be deployed to the main Ethereum network. In contrast to tools that operate on the
bytecode level, source-level hardening can perform analysis on the source code to obtain
semantic information. Furthermore, a source-level hardening approach can be inspected
by a developer to remove the overhead of unnecessary checks. As such, hardening at the
source-code level could be a more practical solution in the short term.
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A number of ongoing attacks have fueled interest in the community to enhance the security
of smart contracts. In this respect, a number of solutions ranging from devising better devel-
opment environments to using safer programming languages, formal verification, symbolic
execution, and dynamic runtime analysis have been proposed in the last few years [Gro+18;
Kal+18; Luu+16; Rod+19]. However, most analysis tools focus on detecting vulnerabilities
or proving the absence of a certain type of bug [Gri+20; Kal+18; Luu+16; Mos+19; Tsa+18].
This includes the fuzzing technique we describe in Chapter 5. Dynamic analysis techniques
can be integrated directly into the blockchain to mitigate attacks as they happen [Gro+18;
Rod+19], which we discuss in Chapter 6. However, it is unclear how to deal with false
alarms in these dynamic analyses when integrated directly into the blockchain platform.
Furthermore, a post hoc integration into current production blockchain systems is unlikely
due to the need for backward compatibility. As such, they cannot be used to protect already
deployed legacy contracts on, e.g., the main Ethereum blockchain as it is used today. Since
none of the prior method of securing smart contracts are sufficient, a method to upgrade
smart contracts that are being deployed to current blockchain systems is needed.

However, the patching lifecycle of smart contracts on the Ethereum blockchain is quite
complex. By design, Ethereum smart contracts are immutable, which requires more involved
upgrading strategies to work around this. The naive approach, called migration, requires
the contract owner to deprecate the vulnerable contract, move all funds out of the contract,
deploy a new contract, and finally move the funds to the new contract. This is a cumbersome
and manual process, which is further exacerbated when the address of the vulnerable contract
is referenced by other contracts. Besides the migration pattern, proxy contracts have emerged
as the de-facto standard for upgradable contracts. The idea is that a truly immutable proxy
contract uses an interchangeable and trusted logic contract to implement the actual business
logic.

With EVMPatch, we address the problem of automated and timely patching of smart
contracts to aid developers in instantly taking action on reported smart contract errors. We
describe our patching framework EVMPatch that features a bytecode-rewriter for Ethereum
smart contracts. Employing bytecode rewriting makes our framework independent of the
source programming language and allows our framework to work on unmodified contract
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bytecode. EVMPatch utilizes the bytecode-rewriting engine to ensure that patches are
minimally intrusive and that the newly patched contract is compatible with the original
contract. In particular, our framework automatically replays transactions on the patched
contract to

1. test the functional correctness of the patched contract with respect to previous trans-
actions pertaining to the contract,

2. identify potential attacks, i.e., developers can determine whether their vulnerable
contract has been attacked in the past.

EVMPatch uses a best-effort approach to ensure the introduced patch does not break
functionality by testing with previously issued transactions to the contract and optionally
also developer-provided unit tests. While such a differential testing approach cannot provide
a formal proof of the correctness of the patched contract, it works without requiring a formal
specification. Our experiments (see Section 7.4) show that this approach is sufficient in
practice to identify broken patches.

Contributions We present the design of EVMPatch, an automated approach to smart
contract patching. We show how to implement such a highly automated patching workflow
using bytecode-level patches. By applying patches on the bytecode level, EVMPatch
is independent of the used programming language/compiler and compiler version. That
is, EVMPatch supports any off-the-shelf Ethereum smart contract code. We employ
bytecode writing to ensure minimally intrusive patches that are compatible by design with
the contract’s storage layout. However, as for any approach working on either the binary
or bytecode level, we had to tackle several technical challenges (Section 7.3). EVMPatch
not only patches a smart contract but also automatically converts the original contract to
use the delegatecall-proxy pattern. As such, EVMPatch can automatically deploy newly
patched contracts in a fully automated way without requiring any developer intervention
using this proxy pattern.

In principle, EVMPatch can support patching of different classes of vulnerabilities (see
Section 7.3.4). However, our proof-of-concept implementation targets two major bug classes:
access control and integer overflow bugs. The latter has been repeatedly exploited in high-
value ERC-20 contracts [Pecc], whereas the former has been abused in the Parity wallet
attack [Tec17b]. In our EVMPatch prototype, we fully automate patching integer overflow
bugs. To keep the overhead minimal and ensure contract functionality, we selectively harden
exactly those integer arithmetic instructions, which are considered to be vulnerable by the
existing symbolic execution tool Osiris [FSS18]. However, our automated patch generation
tool does not depend on one specific analysis tool. In fact, any static or dynamic analysis
tool can be easily integrated. With access control issues as an example, we discuss what it
takes to integrate the capability to patch a new type of vulnerability into the EVMPatch
framework.

To evaluate EVMPatch in terms of performance, effectiveness, and functional correctness,
we apply EVMPatch to several real-world vulnerable contracts. To this end, we used the
patch testing component of the EVMPatch framework to re-play all existing transactions
to the original contract on the patched contract. This allows us to provide an in-depth
investigation of several actively exploited smart contracts, e.g., token burning and history
of attack transactions (before and after public disclosure). For a number of contracts we
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investigated in our evaluation, we found that EVMPatch would have blocked several
attacks that happened after public disclosure of the vulnerability. This shows that even
though those contracts were officially deprecated, they were still used by legitimate users
and exploited by malicious actors. As such, there is an immediate need for tooling, as
provided by EVMPatch, which allows the developers of smart contracts to efficiently patch
their contracts. Our evaluation also covers important practical aspects such as gas and
performance overhead (i.e., the costs for executing transactions in Ethereum). The gas
overhead for all our patched contracts was below 0.01 US$ per transaction. Overall, the
performance overhead was negligible.

The basis for this chapter is the following publication:
“EVMPatch: Timely and Automated Patching of Ethereum Smart Contracts”. 30th
USENIX Security Symposium, 2021. Michael Rodler, Wenting Li, Ghassan O. Karame,
and Lucas Davi

7.1 Background on Patching Smart Contracts
In this section we review the necessary background on upgrading smart contracts in Sec-
tion 7.1.1 and the challenges and pitfalls of rewriting EVM bytecode in Section 7.1.2.

7.1.1 Upgrading Ethereum Smart Contracts
Ethereum treats the code of smart contracts as immutable once they are deployed on the
blockchain, with the exception of the selfdestruct mechanism that destroys a smart contract.
To remedy this, the community came up with strategies for upgrading smart contracts [Cona;
Nad; Tra18]. Currently, the two most common patterns are the migration pattern and
variations of the proxy pattern.

Superficially, the migration upgrade pattern is the most naive pattern and can be applied
to many smart contracts. The patched contract is deployed on the blockchain at a separate
new address with a fresh and clean state. The administrators of the contract then need
to inspect the state of the old contract and manually migrate all stored values to the new
contract. Because of this, state migration is specific to the contract and must be manually
implemented by the developers of the contract. It requires the contract developers to have
access to all the internal state of the old contract and a procedure in the new contract to
accept state transfers. To avoid state migration, developers can also use a separate contract
as a data storage contract, which is sometimes referred to as the eternal storage pattern [EIP;
Nad]. However, this adds additional gas overhead since every time the logic contract needs
to access data, the contract must also perform a costly external call into the data storage
contract.

A more common strategy is to write contracts with the proxy-pattern, with the most
favorable version being the delegatecall-proxy pattern. Here, one smart contract is split into
two different contracts, one for the code and one for data storage: i) an immutable proxy
contract, which holds all funds and all internal state but does not implement any business
logic; ii) a logic contract, which is completely stateless and implements all the actual business
logic, i.e., this contract contains the actual code that governs the actions of the contract.
The proxy contract is the entry point of all user transactions. It has immutable code, and its
address remains constant over the lifetime of the contract. The logic contract implements the
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rules that govern the behavior of the smart contract. The proxy contract forwards all function
calls to the registered logic contract using the DELEGATECALL instruction. This instruction
gives the logic contract access to all internal state and funds stored in the proxy contract.
To upgrade the contract, a new logic contract is deployed, and its address is updated in the
proxy contract. The proxy contract then forwards all future transactions to the patched logic
contract. As a result, deploying upgraded contracts does not require any data migration, as
all data is stored in the immutable proxy contract. Moreover, the upgrading process is also
transparent to users, as the contract address remains the same. Although existing blockchain
platforms do not provide mechanisms to upgrade smart contracts, the usage of this proxy
pattern allows EVMPatch to quickly upgrade a contract with negligible costs (in terms of
gas consumption).

7.1.2 Challenges of EVM Bytecode Rewriting
There are several unique challenges that must be solved when rewriting EVM bytecode: we
need to handle static analysis of the original EVM bytecode and tackle several particularities
of Solidity contracts and the EVM.

Similar to traditional computer architectures, EVM bytecode uses addresses to reference
code and data constants in the code address space. For instance, when a contract calls a
function, it first pushes the address of that function onto the stack and then exploits the
EVM jump instruction to transfer control to that function. Hence, when modifying the
bytecode, the rewriter must ensure that address-based references are correctly adjusted. In
that sense, rewriting EVM bytecode is similar to rewriting binary code for normal CPU ISAs,
such as x86 or ARM. To do so, a rewriter typically employs two static analysis techniques:
CFG recovery and data-flow analysis. The latter is necessary to determine which instructions
are the sources of any address constants utilized in the code. For the EVM bytecode, two
classes of instructions are relevant in this context: code jumps and constant data references.

Code Jumps The EVM features two branch instructions: JUMP and JUMPI. Both take
the destination address from the stack. Handling jumps in the EVM is more challenging
compared to traditional architectures, as the target address is not explicitly encoded into the
jump instruction. Note that function calls inside the same contract also leverage the JUMP
instruction. That said, currently, there is no explicit difference between local jumps inside a
function and calls to other functions. The EVM also features dedicated call instructions,
but these are only used to transfer control to a completely separate contract. Hence, they
do not require modification when rewriting the bytecode.

Constant Data References The so-called CODECOPY instruction is leveraged to copy data
from the code address space into the memory address space. A common example use-case is
the embedding of large data constants such as strings. Similar to the jump instructions, the
address from which memory is loaded is passed to the CODECOPY instruction via the stack.

Handling both types of instructions is challenging due to the stack-based architecture of
the EVM. For instance, the target addresses of jump instructions are always provided on the
stack. That is, every branch is indirect, i.e., the target address cannot be simply looked up
by inspecting the jump instruction. Instead, to resolve these indirect jumps, one needs to
deploy data-flow analysis techniques to determine where and which target address is pushed
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on the stack. For the majority of these jumps, one can analyze the surrounding basic block
to trace back where the jump target is pushed on the stack. For example, when observing the
instructions PUSH2 0xdb1; JUMP, we can recover the jump target by retrieving the address
(0xdb1) from the push instruction.

However, many contracts contain more complicated code patterns, primarily because the
Solidity compiler also supports calling functions internally without utilizing a call instruction.
Recall that the EVM call instructions are more akin to remote-procedure calls. For instance,
when a contract would utilize a call instruction to call itself, the called function cannot
access the stack or the memory address space of the caller, as every call in the EVM is
considered as a new transaction and as such starts with a clean stack and memory address
space. Furthermore, the call instructions are also rather expensive in terms of gas cost, and
as such, compilers such as Solidity minimize their use. The Solidity compiler introduced a
concept where functions are marked as internal to optimize code size and facilitate code
reuse. These functions cannot be called by other contracts (private to the contract) and
follow a different calling convention. Since there are no dedicated return and call instructions
for internal functions, Solidity utilizes the jump instruction to emulate both. As such, a
function return and a normal jump cannot be easily distinguished. This makes it challenging
to (1) identify internal functions and (2) build an accurate CFG of the contract.

Consider Figure 7.1, which depicts an excerpt of a typical CFG when Solidity generates
code utilizing internal function calls. There are two callers of the internal function, named A
and B. Each caller pushes a constant return address onto the stack: A pushes the return
address X ; B the constant Y. These constants are addresses of basic blocks, where execution
resumes once the internal function completes. In this example, both callers push the address
of the first basic block of the internal function, dubbed F, onto the stack and utilize the
jump instruction to call the internal function.

To emulate the return, an indirect jump instruction is leveraged at the end of the internal
function, where the target address is taken from the stack. Depending on the calling context,
the final jump of the internal function will either jump back into A or B. Note that, for this
example, the surrounding basic block does not contain any corresponding push instruction
of the jump target. Instead, the respective push instruction issued at the call site has loaded
the return address on the stack. Hence, data-flow analysis is needed to determine push
instructions that are leveraged for function returns.

When rewriting an EVM smart contract, both the jump instructions and the code-copy
instruction need to be considered in the bytecode rewriter. The obvious strategy to rewrite
smart contracts is to fix-up all constant addresses in the code to reflect the new addresses
after inserting new instructions or removing old instructions. However, this strategy is
challenging because it requires accurate CFG recovery and data-flow analysis, which needs
to deal with particularities of EVM code, such as internal function calls. In the research
area of binary rewriting of traditional architectures, a more pragmatic approach has been
developed: the so-called trampoline concept [Dav+12; Lau+10]. We utilize this approach in
our rewriter and avoid adjusting addresses. Whenever our rewriter must perform changes
to a basic block, e.g., inserting instructions, our rewriter replaces the basic block with a
trampoline that immediately jumps to the patched copy. Hence, any jump target in the
original code stays the same, and all data constants are kept at their original addresses. This
approach allows our rewriter to avoid building a complete control-flow graph altogether. We
describe this process in more detail in the subsequent section.
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Figure 7.1: A typical control-flow graph, when Solidity utilizes internal function calls.

7.2 Design of EVMPatch
In this section, we introduce the design of our automated patching EVMPatch framework,
which enables developers to patch and harden smart contracts in an automated and timely
manner. Our framework operates on unmodified smart contracts and is independent of the
source programming language, as it does not require source code. At its core, our framework
utilizes a bytecode rewriter to apply minimally intrusive patches to EVM smart contracts.
Combined with a proxy-based upgradable smart contract, this bytecode rewriting approach
allows the developer to automatically introduce patches and deploy them on the blockchain.
One major advantage of this approach is that when new attack types are discovered or bug
finding tools improve, the contract can be automatically re-checked, patched, and re-deployed
in a short amount of time and with minimal developer intervention.

We envision a setting where EVMPatch is executed on a trusted machine operated by
the smart contract developer and is continuously running new and updated vulnerability
detection tools. This can also include dynamic analysis tools, which analyze transactions
that are not yet included in a block, but are already available to the Ethereum network.
Whenever one of the analysis tools discovers a new vulnerability, EVMPatch automatically
patches the contract, tests the patched contract, and deploys it.
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Figure 7.2: Architecture of EVMPatch

7.2.1 Design Choices
The proxy pattern makes it possible to easily deploy a patched smart contract in Ethereum.
However, it neither generates a patched version nor features functional tests of the patched
contract. EVMPatch fills this gap by providing a comprehensive framework that automates
many steps in the patching process, such as testing the effectiveness of the generated patch.

For generating patches, there is one fundamental design decision: applying the patch
on the source code level or the EVM bytecode level. At first glance, source-code patching
seems to be the option of choice as developers have access to source code, are able to
inspect the source code changes, and can even make adjustments if the automated approach
introduces undesired changes. However, when utilizing upgradable contracts, there is one
major challenge when applying source code rewriting: one needs to carefully preserve the
storage layout. Otherwise, the patched contract will corrupt its memory and fail or (worse)
introduce dangerous bugs. Namely, some changes in the source code can break the contract
compatibility, even though the changes do not break the logic of the contract.

Statically-sized variables are laid out contiguously in storage starting from address 0.
Contiguous variables with size less than 32 byte can be packed into a single 32 byte storage
slot [Sol]. As a result, any changes to re-order, add, or remove variables in the source code
may look harmless, but on the EVM level, such changes will lead to a mapping of variables
to wrong and unexpected storage addresses. In other words, changes in variable declaration
corrupt the internal state of the contract, as the legacy contract and the patched contract
have different storage layouts. To mitigate this issue, tools such as Slither [SliU] provide
upgradeability checks. They assist a developer in checking for contract compatibility, but
they do not automatically generate storage-compatible patched contracts.

In EVMPatch, we opted to utilize bytecode rewriting to introduce patches to smart
contracts. Using bytecode rewriting, we can introduce minimally intrusive patches to the
smart contracts. We can ensure that these minimally intrusive patches do not change the
storage layout by construction. At the same time, bytecode rewriting is sufficiently powerful to
patch many bug classes that only require changes on the level of EVM instructions. Another
reason to opt for bytecode rewriting are existing smart contract vulnerability detection
tools. As of now, the majority of them operate on the EVM level [FSS18; KR18b; Luu+16;
Mos+19] and also report their findings on the EVM level. A bytecode rewriting approach can
exploit the reports of these analysis tools to directly generate an EVM bytecode-based patch.
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Finally, if source-code rewriting is utilized, the developer has limited possibilities to perform
thorough testing on the effectiveness of the patched contract. In particular, checking the
patched contract against old transactions (including transactions that encapsulate attacks)
is easier with bytecode-level patches. Furthermore, analyzing transactions would still require
analysis on the bytecode level to reverse-engineer the attack transactions and how they fail
against the patched contract. Bytecode-rewriting allows developers to directly match the
rewritten bytecode instructions to the attack transactions making forensic analysis feasible.
Given all these reasons, we decided to opt for bytecode rewriting.

7.2.2 Framework Design
Our framework depicted in Figure 7.2 consists of the following major components:

1. the vulnerability detection engine consisting of automatic analysis tools and public
vulnerability disclosures,

2. bytecode rewriter to apply the patch to the contract,
3. the patch testing mechanism to validate the patch on previous transactions, and
4. the contract deployment component to upload the patched version of the contract.
At first, the vulnerability detection adapter component identifies the location and type

of the vulnerability using external analysis tools, such as those described in Chapter 5 or
Chapter 6. This information is then passed to the bytecode rewriter, which patches the
contract according to previously defined patch templates. The patched contract is thereafter
forwarded to the patch tester, which replays all past transactions to the contract. That said,
we do not only patch the contract, but we allow the developer to retrieve a list of transactions
that exhibit different behavior and outcome between the original and patched contract.
These transactions serve as an indicator of potential attacks on the original contract. If the
list is empty, our framework automatically deploys the patched contract instantly on the
Ethereum blockchain. Next, we will provide a more detailed description of the four major
components of our design.

Vulnerability Detection Before being able to apply patches, EVMPatch needs to identify
and detect vulnerabilities. EVMPatch leverages existing vulnerability detection tools such
as [FSS18; FAH20; Gro+18; KR18b; Luu+16; Nik+18; Rod+19; Tsa+18]. For vulnerabilities
that are not detected by any existing tool, we require that a developer or a security consultant
creates a vulnerability report. In our system, the vulnerability detection component is
responsible to identify the exact address of the instruction, where the vulnerability is located,
and the type of vulnerability. This information is then passed to the bytecode rewriter,
which patches the contract accordingly.

Bytecode Rewriter At the core of our framework is the bytecode rewriter, which applies
patches to the smart contract. Binary rewriting is a well-known technique to instrument
programs after compilation. Binary rewriting has also been applied to retrofit security
hardening techniques such as control-flow integrity, to compiled binaries [Dav+12], but
also to dynamically apply security patches to running programs [PBG+13]. Two flavors of
approaches have been developed for binary rewriting on traditional architectures: static and
dynamic rewriting. Dynamic approaches [Luk+05] rewrite code on the fly, i.e., while the
code is executing. This avoids imprecise static analysis on large binaries. However, dynamic
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binary rewriting requires an intermediate layer, which analyzes and rewrites code at runtime.
Since the EVM does not support dynamic code generation or modification, it is not possible
to apply this approach efficiently in Ethereum.

In contrast, static binary rewriting [BH00; Lau+10] is applicable to Ethereum as it does not
require any additional support code at runtime. It relies on static analysis to recover enough
program information to accurately rewrite the code. In general, static binary rewriting
techniques are well suited for applying patches in Ethereum since smart contracts have
comparably small code sizes: typically in the range of about 10 kbyte. The Ethereum main
network even enforces a hard limit of 24 kbyte on contract size [But16]. Furthermore, EVM
smart contracts are always statically linked to all library code. It is not possible for a contract
to dynamically introduce new code into the code address space. This makes the reliance on
binary rewriting techniques simpler compared to traditional architectures. As such, smart
contracts are a good target for static binary rewriting as many problems of static binary
rewriters on classical architectures are avoided due to the nature of EVM smart contracts.

The stack-based architecture of the EVM requires special attention when implementing
a patch: all address-based references to any code or data in the code address space of the
smart contract must be either preserved or updated when new code is inserted into the code
address space. Such references cannot be easily recovered from the bytecode. To tackle
this challenge, EVMPatch utilizes a trampoline-based approach for adding new EVM
instructions into empty code areas. We describe this trampoline-based approach in more
detail in Section 7.3.

To implement a patch, the bytecode rewriter processes the bytecode of the vulnerable
contract as well as the vulnerability report. The rewriting is based on a so-called patch
template which is selected according to the vulnerability type and adjusted to work with the
given contract. Even though a template-based patching approach does not offer the same
flexibility as source-level patching, it allows us to cover many common types of vulnerabilities.

Patch Templates In EVMPatch, we utilize a template-based patching approach: for every
supported class of vulnerabilities, a patch template is integrated into EVMPatch. This
patch template is automatically adapted to the contract that is being patched. We create
generic patch templates such that they can be easily applied to all contracts. EVMPatch
automatically adapts the patch template to the contract at hand by replacing contract-specific
constants (i.e., code addresses, function identifiers, storage addresses). Patch templates
for common vulnerabilities, such as integer overflows, are shipped as part of EVMPatch,
and a typical user of EVMPatch will never interact with the patch templates. However,
optionally, a smart contract developer can also inspect or adapt existing patch templates
or even create additional patch templates for vulnerabilities that are not yet supported by
EVMPatch. EVMPatch supports two formats for custom patch templates. The first
is based on EVM instructions as shown in Figure 7.3, which are assembled and relocated
during bytecode rewriting. EVMPatch also supports a yaml based configuration file that
describes patches to a contract. An example of this format is depicted in Figure 7.4. Here
a developer can utilize simple domain-specific expression language that resembles Python
expressions to describe patches that enforce pre-conditions on functions similar to Solidity
modifiers.
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1 # load owner
2 PUSHN $owner_address
3 SLOAD
4 # mask loaded value, since addresses are 20 bytes long
5 PUSH20 0xffffffffffffffffffffffffffffffffffffffff
6 AND
7 CALLER
8 EQ
9 # if (caller() == sload($owner_address))

10 PUSHL $CONTINUE
11 JUMPI
12 # revert(0, 0)
13 PUSH1 0x00
14 DUP1
15 REVERT
16 JUMPDEST CONTINUE

Figure 7.3: Patch template for the only owner patch template that implements an access
control check. EVMPatch specializes this template according to the storage
address of the owner variable. Furthermore, the assembler built into EVMPatch
can handle several pseudo-opcodes such as PUSHN to push constants with unknown
size and PUSHL, which pushes the address of following JUMPDEST instruction. i.e.,
it performs relocation of the code at the time of rewriting.

Patch Tester As smart contracts directly handle assets (such as Ether or Tokens), it is
critical that any patching process does not impede the actual functionality of a contract.
As such, any patch must be tested thoroughly. To address this issue, we introduce a patch-
testing mechanism, which is based 1) on the transaction history recorded on the blockchain
and 2) optional developer-supplied unit tests. At this point, we exploit the fact that any
blockchain system records all previous executions of a smart contract, i.e., transactions in
Ethereum. In our case, the patch tester re-executes all existing transactions and optionally
any available unit test and verifies that all transactions of the old legacy and the newly
patched contract behave consistently. The patch tester detects any behavioral discrepancy
between the old legacy and the newly patched contract and reports a list of transactions
with differing behavior to the developer. That said, as a by-product, our patch-testing
mechanism can be used as a forensic attack detection tool. Namely, while executing the
patching process, the developer will also be notified of any prior attacks that abuse any of the
patched vulnerabilities and can then act accordingly. In case both versions of the contract
behave the same way, the patched contract can be automatically deployed. Otherwise,
the developer must investigate the list of suspicious transactions and thereafter invoke the
contract deployment component to upload the patched contract. The list of suspicious
transactions may not only serve as an indicator of potential attacks but may reveal that
the patched contract is not functionally correct, i.e., the patched contract shows a different
behavior on benign transactions. In Section 7.4, we provide a thorough investigation of
real-world, vulnerable contracts to demonstrate that EVMPatch successfully applies patches
without breaking the original functionality of the contract.
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1 add_require_patch:
2 deposit:
3 - "sload(owner) != 0"
4 withdraw: []
5 migrateTo:
6 - "sload(0) == caller()"

Figure 7.4: Patch configuration file that describes a patch to EVMPatch and is used for
manual patching assisted by EVMPatch. Here two patches are added to the
contract. The first adds a pre-condition check to the deposit function, which
prevents calling this function if no owner is set. The second patch restricts access
to the migrateTo to the owner, which is stored at storage address 0.

Contract Deployment As discussed in Section 7.1.1, the delegatecall-proxy-based upgrade
scheme is the option of choice to enable almost instant contract patching. Thus, EVMPatch
integrates this deployment approach by utilizing a proxy contract as the primary entry point
for all transactions with a constant address. Before the first deployment, EVMPatch trans-
forms the original unmodified contract code to utilize the delegatecall-proxy pattern. This is
done by deploying a proxy contract, which is immutable and assumed to be implemented
correctly. For example, EVMPatch comes with a default proxy contract that is only 80
lines of Solidity code. However, it is trivial to integrate other proxy contracts, such as those
with recent standardization efforts [IA; MWM]. The original bytecode is then converted to a
logic contract using the bytecode rewriter with only minor changes to the original code. The
logic contract is then deployed alongside the proxy contract.

Patch Deployment Finally, when the contract is patched and after the patch is tested
by the patch tester component, EVMPatch can deploy the newly patched contract. Our
upgrade scheme deploys the newly patched contract code to a new address. It then issues a
dedicated transaction to the previously deployed proxy contract, which switches the address
of the logic contract from the old vulnerable version to the newly patched version. The
patched logic contract now handles any further transactions.

Human Intervention We designed EVMPatch to be fully automated. However, there are
a few scenarios where developer intervention is required. Namely, if (1) the vulnerability
report relates to a bug class that is not yet supported by EVMPatch, or (2) the patch
tester reports at least one transaction that fails due to the newly introduced patch and the
failing transaction is not a known attack transaction, (3) the patch tester reports that at
least one known attack transaction is not prevented by the newly introduced patch.

If a bug class is not supported, EVMPatch informs the developer about the unsupported
vulnerability class. Since EVMPatch is extensible, it easily allows developers to provide
custom patch templates thereby allowing quick adaption to new attacks against smart
contracts.

If the patch tester finds a new failing transaction, the developer has to analyze whether
a new attack transaction has been discovered or a legitimate transaction has failed. For
a newly discovered attack transaction, EVMPatch adds this transaction to the list of
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attacks and proceeds. Otherwise, the developer investigates why the legitimate transaction
failed. As our evaluation in Section 7.4 shows, such cases typically occur due to inaccurate
vulnerability reports, i.e., wrongly reported vulnerabilities rather than faulty patching. Thus,
the developer can simply blacklist the wrongly reported vulnerable code locations to avoid
patching at these locations.

These manual interventions typically only need quick code reviews or debugging sessions.
We believe even moderately experienced Solidity developers can perform these tasks as no
detailed knowledge about the underlying bytecode rewriting system is needed. As such,
EVMPatch positions itself as a tool to enable more developers to securely program and
operate Ethereum smart contracts.

If the patch tester reports that the patch does not prevent a known attack transaction,
then the patch is not effective. In this case, EVMPatch notifies the developer and must
investigate whether the vulnerability report accurately describes the actual exploitation
attempt. Then the developer must manually refine the vulnerability report to include the
accurate vulnerability class and location such that EVMPatch can apply the right patch
template at the right place.

7.3 Implementation of EVMPatch
In this section, we describe the implementation of EVMPatch according to the architecture
presented in Section 7.2. Previously, in Section 7.1.2, we discuss engineering challenges
for bytecode rewriting in Ethereum. In the following chapter, we describe how we tackle
these challenges in EVMPatch. We describe the implementation of the bytecode rewriter
(Section 7.3.1), the patch testing feature (Section 7.3.2), and the contract deployment
mechanism (Section 7.3.3).

7.3.1 Trampoline-based Bytecode Rewriting
We implement a trampoline-based rewriter in Python and utilize the pyevmasm1 library for
disassembling and assembling raw EVM opcodes. Our trampoline-based bytecode rewriter
works on the basic block level and utilizes an algorithm similar to the algorithm shown in
Algorithm 1 to identify basic block boundaries. In contrast to the algorithm described in
Algorithm 1, we apply the analysis only to the relevant parts of the code.

When an instruction needs to be instrumented, the whole basic block that contains the
instruction is copied to the end of the contract. The bytecode rewriter then applies the
patch to this new copy of the basic block. The original basic block is replaced with a
trampoline, i.e., a short instruction sequence that immediately jumps to the copied basic
block. Whenever the contract jumps to the basic block at its original address, the trampoline
is invoked, redirecting execution to the patched basic block by means of a jump instruction.
To resume execution, the final instruction of the instrumented basic block issues a jump
back into the original contract code. Figure 7.5 shows an example of the bytecode rewriting
process. Here the basic block at 0xAB is replaced by a trampoline, and the original basic
block is moved to the address 0xFFB. While the trampoline-based approach avoids fixing up

1github.com/crytic/pyevmasm
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any references, it introduces additional jump instructions. However, as we will show, the gas
cost associated with these additional jumps is negligible in practice (see Section 7.4).

With the trampoline approach, all addresses that reference the original contracts bytecode
stay the same. This means our rewriter must not fix up any references and, as such, avoids
the need for complex and failure-prone data-flow analysis. However, to ensure correct
execution, we must still compute a partial CFG, starting from the patched basic blocks.
This is necessary to recover the boundaries of the basic blocks that are patched and the
following basic blocks that are connected by a so-called fall-through edge. Not all basic
blocks terminate with an explicit control-flow instruction: Whenever a basic block ends
with a conditional jump instruction (JUMPI) or simply does not end with a control-flow
instruction, there is an implicit edge (i.e., fall-through) in the control-flow graph to the
instruction at the following address.

Handling Fall-Through Edge Two cases must be considered when handling the fall-through
edge. When the basic block targeted by the fall-through edge starts with a JUMPDEST
instruction, the basic block is marked as a legitimate target for regular jumps in the EVM.
In this case, we can append an explicit jump to the rewritten basic block at the end of the
contract and ensure that execution continues at the beginning of the following basic block in
the original contract code. In case the following basic block does not begin with a JUMPDEST
instruction, the EVM forbids explicit jumps to this address. In the CFG, this means that
this basic block can only be reached with a fall-through edge. To handle this case, our
rewriter copies the basic block to the end of the contract right behind the rewritten basic
block constructing another fall-through edge in the CFG of the rewritten code.

Figure 7.5 shows an example of how our rewriter changes the CFG of the original contract.
The ADD instruction is replaced with a checked add routine that additionally performs integer
overflow checks. We call the address of the ADD instruction the patch point. The basic block,
which contains the patch point, is replaced with a trampoline. In this case, it immediately
jumps to the basic block at 0xFFB. This basic block, which is placed at the end of the original
contract, is a copy of the original basic block at 0xAB, but with the patch applied. Since
the basic block is now at the end of the contract, the bytecode rewriter can insert, change,
and remove instructions in the basic block without changing any address in the code that
is located at higher-numbered addresses. We fill the rest of the original basic block with
the INVALID instruction to ensure the basic block has the exact same size as the original
basic block. The basic block at 0xCD is connected to the prior basic block by means of a
fall-through edge. However, this basic block starts with a JUMPDEST instruction and, as such,
is a legitimate jump target. Hence, the rewriter then appends a jump to the patched basic
block at 0xFFB, which ensures execution continues in the original contract’s code at address
0xCD.

Adapting to Solidity Smart Contracts The EVM has some particularities that must be
considered when implementing a bytecode rewriter. As discussed in Section 3.2.4 the EVM
enforces some separation of code and data in the code address space. Namely, the EVM
disallows jumps into the data constants that are embedded into PUSH instructions. However,
such push instructions are often part of constant data, which is accumulated at addresses
strictly larger than any reachable code by smart contract compilers. This avoids any conflicts
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Original Code Rewritten Code

...

PUSH1 0x01
ADD
POP

...

PUSH2 0x0FFB
JUMP
_____________
INVALID
INVALID

...

INVALID

JUMPDEST
...

⇒ JUMPDEST
...

JUMPDEST
...

PUSH1 0x01
[ CHECKED_ADD ]
POP

...
PUSH1 0xCD
JUMP

Patch Point

0xAB

0xCD

0xAB

0xCD

0xFFB

Figure 7.5: Control-flow graph of original and rewritten code. The end of the original
contract’s code is marked with a dashed line. The original basic block at address
0xAB is replaced with trampoline code that jumps to the patched version of the
basic block, located at address 0xFFB. The patched basic block is appended right
after the end of the original contract at address 0xFFB. The patched basic block
jumps back into the original code at address 0xCD.

between the generated code and data encoded into the code address space. However, our
trampoline-based rewriter does append code behind the data constants of the smart contracts.
When the rewriter appends code, it avoids that the new code is accidentally marked as an
invalid jump destination due to a preceding push opcode byte. The rewriter avoids this by
carefully inserting padding between the data of the original contract and the newly appended
code. To compute the necessary length of the padding, we leverage the common EVM linear
sweep algorithm, as described in Section 3.2.4 to determine the first valid code address after
the end of the original contract.

Furthermore, most contracts contain additional meta-data at the end of the contract. For
instance, Solidity appends a special encoding of a hash value, called the swarm hash, at the
end of each contract [SolSH]. It is expected that a compiled Solidity contract ends with
the swarm hash. As such, our bytecode rewriter handles the swarm hash in a special way.
Instead of appending code after the swarm hash, the bytecode rewriter inserts new code and
data right before the original swarm hash. This ensures that the swarm hash is always at
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the end of the contract, even after rewriting. Normal contracts will not reference the swarm
hash in their code and as such, the address of the swarm hash can be changed without
impacting the original code.

Applicability of Trampoline Approach The trampoline-based approach to rewriting requires
only minimal code analysis and works for most use cases. However, this approach faces two
problems. First, instructions can only be patched in basic blocks that are large enough (in
terms of size in bytes) to also contain the trampoline code. However, a typical trampoline
requires 4 to 5 bytes, and typically, basic blocks that perform some meaningful computation
are large enough to contain the trampoline code. Second, due to the copying of basic blocks,
the code size increases depending on the patched block, thereby increasing deployment
cost. However, our experiments show that the overhead during deployment is negligible (on
average US$ 0.02 per deployment, see Section 7.4).

No reliance on accurate CFG Recovering an accurate CFG given only EVM bytecode
is a challenging problem. However, our trampoline-based approach does not require an
accurate and complete CFG. Instead, we only need to recover basic block boundaries given
the program counter of the instruction, where the patch needs to be applied. In doing so,
recovering the basic block boundaries is tractable since the EVM has an explicit marker for
basic block entries (see Section 3.2.4). Furthermore, our rewriter only needs to recover the
end of the basic block and any following basic blocks that are connected via fall-through
edges in the CFG.

7.3.2 Patch Testing
While the insertion of trampolines into the original code does not change the functionality
of the contract, the patch template itself can perform arbitrary computations and could
potentially violate the semantics of the patched contract. To test the patched contract,
EVMPatch utilizes a differential testing approach. That is, we re-execute all transactions
of the contract to determine if the behavior of the original, vulnerable code and the newly
patched code differ. EVMPatch utilizes past transactions to the contract retrieved directly
from the blockchain. If the contract comes with unit tests, EVMPatch can also utilize the
unit tests to test the newly patched contract. While this differential testing approach cannot
guarantee formal correctness of the contract, it raises confidence in the patched contract.

One potential problem for any testing-based approach is a low test coverage. In the
history-based testing, which we utilize in EVMPatch, contracts with a low number of
available transactions are also prone to low test coverage. However, our experiments (see
Section 7.4) show that the differential testing approach works well enough in practice to show
that the patches do not break functionality. Given the availability of a formal specification
of the contract’s functionality, EVMPatch could also leverage a model checker to validate
a patched contract more rigorously.

During differential testing, we first retrieve a list of transactions to the vulnerable contract
from the blockchain. Second, we re-execute all those transactions and retrieve the execution
trace for each transaction. Then, we then re-execute the same transactions but replace
the code of the vulnerable contract with the patched contract code to obtain the second
execution trace. We use a modified Ethereum client, based on the popular go-ethereum
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client2 since the original client does not support this functionality. Finally, we compare both
execution traces, and the patch tester produces a list of transactions where the behavior
differs. If there are no such transactions, then we assume that the patch does not inhibit the
functionality of the contract and proceed with deploying the patched contract.

The execution traces of the original and patched contracts are never equal since patching
changes control flow and inserts instructions. Hence, we examine only potentially state-
changing instructions, i.e., instructions that either write to the storage area (i.e., a SSTORE) or
transfer execution flow to another contract (e.g., a CALL instruction). We then compare the
order, parameters, and result of all state-changing instructions and find the first instruction
where the two execution traces differ. Currently, we assume that the introduced patches do
not result in any new state-changing instructions. This assumption holds for patches that
introduce input-validation code and revert when invalid input is passed. However, the trace
difference computation can be adapted to become aware of potential state changes that a
patch introduces.Reported transactions that fail in the code, which is part of the patch, are
marked as potential attack transactions. If the reported transaction failed due to out-of-gas
in the patched code, we rerun the same transaction with an increased gas budget. We issue
a warning since users will have to account for additional gas costs introduced by the patch.
Finally, the developer must examine the reported transactions to decide whether the given
list of transactions is legitimate or malicious. As a side-effect, this makes our patch tester
an attack detection tool for the vulnerable contract allowing developers to quickly find prior
attack transactions.

7.3.3 Deployment of Patched Contracts
As described in Section 7.2, EVMPatch utilizes the delegatecall-proxy based upgrade
pattern to deploy the patched contract. To achieve this, EVMPatch splits the smart
contract to two contracts: a proxy contract and a logic contract. The proxy contract is the
primary entry point and stores all data. By default, EVMPatch utilizes a proxy contract
that is shipped with EVMPatch. However, EVMPatch can also re-use existing upgradable
contracts, such as contracts developed with the ZeppelinOS framework [ZepOS]. Users
interact with the proxy contract, which is located at a fixed address. To facilitate the
upgrade process, the proxy contract also implements functionality to update the address of
the logic contract. To prevent malicious upgrades, the proxy contract also stores the address
of an owner who is allowed to issue upgrades. The upgrade then simply consists of sending
one transaction to the proxy contract, which will (1) check whether the caller is the owner
and (2) update the address of the logic contract.

The proxy contract retrieves the address of the new logic contract from storage and simply
forwards all calls to that contract. Internally, the proxy contract utilizes the DELEGATECALL
instruction to call into the logic contract. This allows the logic contract to gain full access
to the proxy’s storage memory area, thereby allowing access to the persistent data without
any additional overhead.

2We utilized version 1.8.27-stable-3e76a291
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1 function initMultiowned(address[] _owners, uint _required)
2 ➀ internal {
3 // ...
4 function initDaylimit(uint _limit) ➀ internal {
5 // ...
6 // throw unless the contract is not yet initialized.
7 modifier only_uninitialized { if (m_numOwners > 0) throw; _;}
8

9 function initWallet(address[] _owners, uint _required,
10 uint _daylimit)
11 ➁ only_uninitialized {
12 // ...

Figure 7.6: Source code of patched Parity Multisig Wallet.

7.3.4 Application to Vulnerability Classes
The bytecode rewriter takes a patch template, which is specified as a short snippet of
EVM assembly language. This template is then specialized according to the patched
contract and relocated to the end of the patched contract. This template-based approach
to patch generation allows specifying multiple generic patches to address whole classes of
vulnerabilities, such as 1) mishandled exceptions [Luu+16], 2) reentrancy (see Section 3.2.3),
3) access control issues [KR18a; Nik+18], and 4) integer bugs [FSS18]. In the following, we
discuss two vulnerability classes that can immediately benefit from our framework.

Improper access control

Improper access control to critical functions can be patched by just inserting a check at the
beginning of a function to verify that the caller is a certain fixed address or equal to some
address stored in the contract’s state. Prior work [KR18b; Nik+18] investigated detection
tools to handle this vulnerability. We can also utilize EF�CF, introduced in Chapter 5, to
identify access control issues, such as unprotected selfdestructs.

The Parity MultiSig Wallet is a prominent example of access control errors [Bre+17;
Tec17b]. This contract implements a wallet that is owned by multiple accounts. Any action
taken by the wallet contract must be authorized by at least one of the owners. However, the
contract suffered from a fatal bug that allowed anyone to become the sole owner because the
corresponding functions initWallet, initMultiowned, and initDayLimit did not perform any
access control checks.

Figure 7.6 shows the patched source code which adds the internal modifier to the functions
initMultiowned and initDayLimit (marked with ➀ in Figure 7.6). This modifier makes these
two functions inaccessible via the outside interface of the deployed contract. Furthermore,
the patch adds the custom modifier only_uninitialized, which checks whether the contract
was previously initialized (marked with ➁ ).

The developers originally introduced a new vulnerability while deploying the patched
contract, which was actively exploited [Tec17a]. In contrast, because EVMPatch performs
bytecode rewriting, it would have immediately generated a securely patched version of the
contract and would have deployed it automatically in a secure manner.
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1 add_require_patch:
2 initWallet:
3 - sload(m_numOwner) == 0
4

5 delete_public_function_patch:
6 - initDayLimit
7 - initMultiowned

Figure 7.7: Customized Patch for Partity Multsig Wallet.

Consider Figure 7.7, which shows a customized patch in the domain-specific language
employed by EVMPatch to specify patches. As such, we insert a patch at the beginning
of the initWallet function that checks whether the condition sload(m_numOwners) == 0
holds, i.e., whether the contract is not yet initialized. If this does not hold, the contract
execution will abort with a REVERT instruction. Note that in the patch in Figure 7.7, we
require an explicit sload to load variables from storage. Further, the expression is logically
inverted compared to the source-level patch since this patch essentially inserts a Solidity
require statement. Furthermore, two other publicly accessible functions need to be removed
from the public function dispatcher. The patch shown in Figure 7.7 combines two existing
patch templates provided by EVMPatch. First, the add require patch template enforces a
pre-condition before a function is entered. Second, the delete public function patch template
removes a public function from the dispatcher, effectively marking the function as internal.

We verified that both the source-level and EVMPatch-ed contracts successfully prevent
an attack. This shows the potential of EVMPatch to patch a wide variety of different bugs,
including access control bugs. In this example, we manually constructed the access control
patch. Due to the application-specific nature of access control bugs, it is highly challenging
to deduce a correct patch for fixing access control bugs. The information given by existing
analysis tools [FAH20; KR18b; Nik+18] is not adequate to automatically construct a patch,
i.e., they only give a vulnerable execution trace and not the root cause of the vulnerability.
As such, we leave the fully automatic patching of access control patches as future work.
However, in the following, we describe how to use a vulnerability detection component to
fully automate the patching process with EVMPatch.

Integer bugs

Integer bugs are highly likely to occur when dealing with integer arithmetic since Solidity
does not utilize checked arithmetic by default. This has resulted in many potentially
vulnerable contracts being deployed and some being actively attacked [FSS18; Pecc]. Given
the prevalence of these vulnerabilities, we discuss in the remainder of this section how to
automatically patch integer overflow bugs using EVMPatch.

Typical integer types are bounded by a minimum and/or maximum size due to the fixed
bit-width of the integer type. However, programmers often do not pay sufficient attention
to the size limitation of the actual integer type, potentially causing integer bugs. Several
high-level programming languages (Python, Scheme) are able to avoid integer bugs since
they leverage arbitrary precision integers with virtually unlimited size. Other programming
languages feature explicitly checked arithmetic (e.g., Rust). Only recently, in version 0.8.0,

172



Chapter 7 Automatic Patching of Smart Contracts

1 function batchTransfer(address[] _receivers, uint256 _value)
2 public whenNotPaused returns (bool) {
3 uint cnt = _receivers.length;
4 // OVERFLOW: 2 * ((INT_MAX / 2) + 1) == 0
5 uint256 amount = uint256(cnt) * _value;
6 require(cnt > 0 && cnt <= 20);
7 // BYPASSED CHECK: balances[msg.sender] >= 0
8 require(_value > 0 && balances[msg.sender] >= amount);
9 // RESULT: Transfer of ((INT_MAX / 2) + 1) tokens

Figure 7.8: Integer overflow bug reported by PeckShield [Peca].

Solidity started to switch to checked integer arithmetic [Sol080] by default. However, many
smart contracts still utilize older Solidity versions, which did not feature any safeguard
against integer bugs at all. This left the burden of handling integer overflows completely on
the developer, who needs to either manually implement overflow checks or properly utilize
the SafeMath library to safely perform numeric operations [OZSM]. While common, the
former is error-prone, and the latter needs to be applied rigorously.

For instance, multiple vulnerabilities in ERC-20 token contracts were unveiled [Pec18;
Peca; Pecb]. These contracts manage subcurrencies, so-called tokens, on the Ethereum
blockchain. Such tokens can deal with large amounts of currency since they track the token
balance of every token owner and mediate the exchange of tokens and Ether. Figure 7.8
shows an excerpt of the BEC token contract’s code as an example of such an integer
overflow vulnerability. When computing the total amount in Line 6, the contract uses an
unchecked integer multiplication. If an attacker provides a very large _value, the overflow
will be triggered, and as a consequence, the amount variable will be set to a small amount.
This effectively bypasses the balance check in Line 11, which verifies that the balance of
the attacker is high enough to transfer the requested tokens as specified in the _value
parameter. This allows the attacker to transfer many tokens to an attacker-controlled
account. Subsequently, the attacker can then attempt to exchange the tokens for Ether or
other currency.

We developed patch templates for detecting integer overflows and underflows for the
standard EVM integer width, i.e., unsigned 256 bit integers. For integer addition, subtraction,
and multiplication, these templates add checks inspired by secure coding rules in the C
programming language [Rob+] and the SafeMath [OZSM] Solidity library. When a violation
is detected, EVMPatch issues an exception to abort and roll back the current call to the
contract.

The patch templates replace a single arithmetic instruction, which is vulnerable to integer
overflows, with a checked variant. As such, our patches are optimized for minimal gas
overhead and minimal intrusiveness into the contract.

Call-Related Patches

In the following, we discuss the capability of EVMPatch in patching call-related vulnerabil-
ities: reentrancy and mishandled exceptions. We have not evaluated these types of patches,
but they are straightforward to implement as they focus on external calls, which are all
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implemented with the CALL instruction in EVM. The patch point naturally becomes the
CALL instruction. Both types of patches can be combined. In fact, both types of patches can
also be applied without using any prior analysis tool to harden any external call at the cost
of higher runtime overhead.

Reentrancy To protect against reentrancy attacks, EVMPatch can utilize an approach
similar to the popular REGuard library provided by the OpenZeppelin project [REGu]. Here
there is a single reentrancy lock that protects all functions. To adapt this, EVMPatch inserts
an SSTORE instruction to set the global lock before the CALL instruction and another SSTORE
after the call to release the global lock. To avoid an incompatible storage layout, the patch
uses a random storage address for the global lock, which is selected using a cryptographically
secure random number generator when preparing the patch. The chance of collisions with
other storage addresses is quite low due to the vast space of storage slots (2256 storage slots
are available). Finally, EVMPatch inserts a check that makes sure the global lock is not
set at the very beginning of the first basic block of the contract. This way, EVMPatch
comprehensively protects all functions of the smart contract. Alternatively, EVMPatch
could insert this check only at the beginning of selected functions using developer annotations
or guidance by a vulnerability detection tool such as EF�CF (see Chapter 5). The downside
of this approach to patching reentrancy is that it does not allow for more fine-grained
protection of storage variables, which would require more complex data-flow analysis as
discussed in Chapter 6.

Mishandled Exceptions This type of bug is also quite easy to patch using EVMPatch.
Typically, the problem with mishandled exceptions is a lack of checking the return value of
external calls. Even if the external call fails and the whole sub-transaction triggered by the
external call is reverted, the buggy smart contract will continue with execution. To patch
this, EVMPatch inserts a generic check for the success of the external call right after the
CALL instruction. If the external call does not succeed, the patch will trigger a revert of the
current transaction. However, such a generic patch has the downside that it does not allow
a developer to intentionally ignore the state of an external call. Furthermore, in current
Solidity versions, the low-level call operations that require manual exception handling have
been discouraged. The Solidity compiler now warns the developer if a call returning due to
an exception is not handled. As such, this type of vulnerability has become less relevant
since the early discussions of Solidity security issues [ABC17; Luu+16].

7.4 Evaluation
We perform an extensive evaluation using our EVMPatch prototype. First, we show
that EVMPatch is capable of patching access control bugs using manually written patch
specifications, based on an example from Section 7.3.4. In the remainder of the evaluation
we focus on our fully automated patching pipeline for integer bugs, which we implemented
with the help of the Osiris [FSS18] tool. We utilize our patch testing component to evaluate
(1) the correctness of the rewriter, (2) the gas overhead, (3) the code size increase, and
(4) the increased deployment costs. Furthermore, we take a detailed look at the timeline of
the attack transactions identified by EVMPatch on several ERC-20 token contracts. We
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conclude with an analysis of false alarms and missed bugs in the Osiris tool, which directly
affect also EVMPatch’s precision.

Running Example: Access Control

In Section 7.3.4 we discussed how to apply EVMPatch to semi-automatically patch an
access control bug in the prominent Parity Multisig Wallet contract. We compare a manual
source-level patch with the patch applied by EVMPatch. We verified that both the
EVMPatch’ed and the manually patched contracts are no longer exploitable. We deploy
the patched versions of the WalletLibrary contract and perform the attack, which now fails
due to the patches. We then compare both the manual and the EVMPatch’ed versions
in terms of their gas overhead and code size increase. Table 7.1 shows an overview of the
results.

EVMPatch only increases contract size by 25 byte. The additional gas cost of the
initWallet function is only 235 gas, i.e., 0.000 06 USD per transaction for 235.091 USD/ETH
and a typical gas price of 1 Gwei. In practice, the gas increase induced by EVMPatch is
negligible. This demonstrates that EVMPatch can efficiently and effectively insert patches
for access control bugs. However, in contrast to bytecode rewriting, the source-level patch
removes public functions much more efficiently. As such, they can also reduce the size of the
final contract bytecode.

Rewriter Correctness

To verify the correctness of the patches generated by our bytecode rewriter, we utilized the
state-of-the-art integer detection tool Osiris [FSS18] for vulnerability detection. After ana-
lyzing 50 535 unique contracts in the first 5 000 000 blocks of the Ethereum blockchain, Osiris
detects at least one integer overflow vulnerability in 14 107 contracts. Using EVMPatch, we
were able to successfully patch almost all of these contracts automatically. More specifically,
we could not patch 33 contracts amongst the 14 107 investigated contracts because the basic
block, where the detected vulnerability was located is too small for the trampoline code.

From those 14 107 contracts, around 8000 involve transactions on the Ethereum network.
We execute the patch tester over these contracts to detect potential attacks and test the
correctness of our patch. To generate a large and representative evaluation data set, we
extracted all transactions sent to these contracts up to block 7 755 100 (May 13th, 2019)
from the Ethereum blockchain resulting in 26 385 532 transactions.

Replaying those transactions with our patch tester shows that for 95.5 % of all vulnerable
contracts, EVMPatch’s generated patch was compliant with all of the prior transactions

Table 7.1: Overhead of access control patch.

Version Code Size (byte) Size Increase Gas Increase
Original 8290 0 % 0

Source-Patched 8201 −1.07 % 226
EVMPatch’ed 8315 0.3 % 235

175



Chapter 7 Automatic Patching of Smart Contracts

associated with those contracts. For the remaining 4.5 % of the investigated contracts, our
patch rejected transactions for one of the following reasons: (1) we successfully stopped a
malicious transaction, (2) the reported vulnerability was a false positive and should not have
been patched, or (3) we unintentionally changed the contract’s functionality. Due to the
high reverse engineering efforts required for analyzing and debugging the bytecode of the
remaining 4.5 %, we do not provide a comprehensive analysis.

For close scrutiny, we selected five ERC-20 token contracts with confirmed integer over-
flow/underflow vulnerabilities that have been successfully attacked (see Table 7.2). We utilize
these token contracts to compare EVMPatch with other patching methods, notably manual
source-level patching. For comparison purposes, we also manually patch these contracts
on the Solidity source code level by replacing the vulnerable arithmetic operations with
functions adapted from the SafeMath library [OZSM]. The manually patched source code
is then compiled with the exact same Solidity compiler version and optimization options
used in the original contract (as reported on etherscan.io). We provide the results of our
comparison in Table 7.3.

We applied the EVMPatch patch tester to the generated patched contract versions and
validated the reported outcome. This allows us to verify whether both patching approaches
abort the same attack transactions. In addition, we can compare the overhead in gas
consumption and the increase in code size. Note that in the manual patching method, we do
not patch all potential vulnerabilities detected by Osiris. To simulate realistic patching, we
do not add checks on those arithmetic operations which cannot be exploited by an attacker.
More specifically, we do not patch vulnerable arithmetic operations contained in functions
that can only be called by the controller or owner of the contract. We verified the correctness
of our patches using a total number of 506 607 real-world transactions associated with the
ERC-20 token contracts listed in Table 7.2.

Table 7.3 shows the transaction execution results of the patch tester. We verified the
aborted transactions and confirmed that all of them correspond to genuine attacks except for
one transaction3, which resembles a special case of token burning that we discuss in detail
below. Apart from the valid attack transactions, the execution traces of the re-executed
transactions match those of the original transactions, confirming that our patch does not
break the contract’s functionality.

Out of the transactions identified as attacks, we found one particular transaction to the
HXG token [HXG]. The transaction does indeed trigger an integer overflow. However, the
HXG contract burns some tokens by transferring them to a blackhole address 0x0. The
burned tokens cannot be recovered, and the balance of the blackhole address does not
influence the behavior of the contract. When analyzing the contract, Osiris is not aware of
the semantics of this blackhole address and reports a possible integer overflow. EVMPatch
then conservatively patches the integer overflow bugs reported by Osiris, which leads to one
legitimate transaction failing. We argue that this pattern can be seen as bad coding practice
as it wastes gas by unnecessarily storing the balance of the blackhole address. We discuss
this particular case along with other false alarms in more detail in Section 7.4.

30x776da02ce8ce3cc882eb7f8104c31414f9fc756405745690bcf8df21e779e8a4
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Gas Overhead

The additional code introduced by the patching may potentially cause transactions to fail
with an out-of-gas error. While the patches generally do not significantly increase gas
consumption, such a behavior can nevertheless occur when the sender of the transactions
provides a very tight gas budget. When the re-execution of a transaction with patched code
fails early due to an out-of-gas exception, we could not accurately compare the behavior of the
patched contract with the original contract. To remedy this, we disabled the gas accounting in
the EVM. We report the amount of additional gas consumption during transaction execution
in Table 7.3. We excluded those transactions that do not execute functions which contain
the vulnerable code. They are not affected by the patches and are, therefore, not relevant to
our measurements. As such, neither the bytecode rewriter nor the manual SafeMath patches
have added any gas overhead.

Our results show that for contracts BEC, SMT, and HXG, those patched with EVMPatch
incur less gas overhead at runtime (83 gas, 47 gas and 120 gas) when compared to those
patched on the source code level (164 gas, 108 gas and 541 gas). This is due to the fact that
the Solidity compiler generates non-optimal code when only very few checks are added. In
particular, Solidity utilizes internal function calls to invoke the SafeMath integer overflow
checks. While this reduces code size (in case the check is needed at multiple places), it
always requires executing additional instructions—thereby increasing gas overhead—to invoke
and return from the internal function. In contrast, EVMPatch inlines the safe numeric
operations, thereby introducing less gas overhead. One would need to instruct the Solidity
compiler to selectively enable function inlining to yield similar gas costs as EVMPatch.

Note that the average gas overhead is 0 gas for the manually patched SCA token. This is
because only one transaction triggers the SafeMath integer overflow check. However, this is
an attack transaction, and it is aborted early, making gas overhead calculation not possible.

For UET and SCA, we identify higher gas overhead than for the manually patched version.
In fact, UET requires, on average, 255 units of additional gas for every transaction in the
patched version. In contrast, only 21 gas is added by the manually patched version. This is
due to the fact that our bytecode rewriter conservatively patches every potential vulnerability
reported by Osiris in these two contracts (12 and 10, respectively). However, not all of them
are exploitable; as such, we did not instrument them during manual patching.

Code Size Increase

Deploying contracts in the Ethereum blockchain also incurs costs proportionally to the size
of the deployed contract. More specifically, Ethereum charges 200 gas per byte to store the
contract code on the blockchain [Woo19]. From Table 7.3, we recognize that the amount
of extra code added by our rewriter is comparable to that of the SafeMath approach when
a single vulnerability is patched. Since our approach duplicates the original basic blocks,
the code size overhead depends on the specific location of the vulnerability. In the case
of the BEC token contract, our rewriter increases the code size less than the source-level
patches. The Solidity compiler generates more code for including the SafeMath library than
is strictly necessary for the patch. Even considering the overhead of bytecode rewriting, we
observe that EVMPatch generates a smaller patch than the manual patching method for
this contract.
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However, in case many vulnerabilities are patched, EVMPatch adds a slightly higher
overhead. Naturally, the size of the upgraded contracts increases with the number of
vulnerabilities to fix due to inlining. For instance, our bytecode rewriter generates 12 patches
for the UET contract and ten patches for the SCA contract resulting in 1299 byte (18.2%)
and 3811 byte (17.3%) increase in code size. In the worst-case scenario in our dataset, this
increase in code size induces negligible additional cost of US$ 0.18 per deployment.

Our patch templates are currently optimized for patching a single vulnerable arithmetic.
It is straightforward to adopt an approach akin to Solidity’s internal function calls when
developing patch templates for our bytecode rewriter, which would reduce the code size
overhead when patching many integer overflows.

EVMPatch applies 3.9 patches on average to the contracts in our data set of 14 107
contracts. The average code size of the original contracts is 8142.7 byte (σ = 5327.8 byte
). The average size increase after applying patches with EVMPatch is 455.9 byte (σ =
333.5 byte). This amounts to an average code size overhead of 5.6% after applying the
patches. Given that Ethereum charges 200 gas per byte to the contract creation transaction,
it incurs an average overhead of 91 180 gas or US$ 0.02 at the time of writing4. In the worst
case that we observed, EVMPatch incurs an overhead of 199 800 gas at deployment, which
at the time of writing amounts to only about US$ 0.04 additional deployment cost. This
shows that the overhead of applying patches with bytecode rewriting is negligible for contract
deployment, especially when compared to the number of Ether possibly at stake.

Costs of Deployment

The deployment cost of a newly patched contract dominates the costs of operating a smart
contract with EVMPatch. Additionally, there is a transaction needed to switch the address
of the logic contract. Since the proxy pattern requires no state migration, this transaction
requires a constant amount of gas. The proxy contract we utilize in EVMPatch consumes
43.167 gas during a switchover transaction, i.e., about US$ 0.01. Currently, state migration is
the most viable contract upgrade strategy besides the proxy pattern. Prior work estimated
that even with only 5000 ERC-20 holders, i.e., smart contract users, state migration will
likely cost more than US$ 100.00 in the best case [Tra18]. Hence, compared to the cost
of migrating all data to a new contract, the EVMPatch’s additional cost of US$ 0.01 is
negligible.

4The calculation is based on 235.091 USD/ETH and a typical gas price of 1 Gwei
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Table 7.2: ERC-20 Token contracts investigated in depth with their respective CVE number,
the number of patches introduced by EVMPatch, and the number of transactions
replayed by EVMPatch’s patch tester and the number of attack transactions
identified while testing the patches.

Contract CVE # Patches # Transactions
Total Attacks

[BEC] 2018-10299 1 424 229 1
[SMT] 2018-10376 1 56 555 1
[UET] 2018-10468 55 24 034 12
[SCA] 2018-10706 1 292 10
[HXG] 2018-11239 9 1497 5

Table 7.3: Average amount of overhead in gas consumption over all replayed transactions
and overhead of contract size of the manual patched contracts (SM) and rewriter-
generated patches (RW) and the overhead of the rewriter converted to US$ (with
a gas price of 1 Gwei and 235 US$/Ether; For readability we only show the exact
US$ figures only if they are more than one cent).

Contract Overhead (gas) Code Size Increase (B) Additional Cost RW (US$)
RW SM RW SM per TX per Upgrade

[BEC] 83 164 117 (1.0%) 133 (1.1%) < 0.01 0.01
[SMT] 47 108 191 (0.8%) 97 (0.4%) < 0.01 0.01
[UET] 225 21 1,299 (18.2%) 541 (7.6%) < 0.01 0.071
[SCA] 47 0 3,811 (17.3%) 361 (1.6%) < 0.01 0.189
[HXG] 120 541 997 (28.1%) 519 (14.6%) < 0.01 0.057
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Figure 7.9: Activity timeline of each contract. The grey shadow indicates the time window
in which the vulnerabilities of these contracts are disclosed by Peckshield [Pecc],
and the big hollow points signify the occurrences of the attacks.

Detecting Attacks

The patch tester of EVMPatch allows us to identify any prior attack transactions. Figure 7.9
shows the timeline of the transactions we replayed and the attacks we identified using the
patcher tester. We observe that while the vulnerabilities of the other token contracts have
been reported within a fairly reasonable time after the first attack, the token UET was
exploited five months before the public bug disclosure. More surprisingly, all contracts are
still fairly active though they encountered a decrease in transaction volume after public
disclosure of the vulnerabilities. Despite the fact that all of these vulnerabilities have been
discovered around one year before the time of writing, there are still 23 630 transactions
(4.66 % of the evaluated transactions) issued to these vulnerable contracts after the public
disclosure of the vulnerabilities. This includes further attacks that have been successfully
executed even after public disclosure. This means that the owners of those contracts did
not properly migrate to patched versions, and users were not adequately notified of the
vulnerable state of these contracts.
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Analysis of False Alarms and Missed Bugs

During our analysis of the vulnerable contracts, we identified false alarms and missed bugs
caused by the vulnerability reporting of Osiris [FSS18]. This demonstrates that our patch
testing is an important step in the process, as many analysis tools are imprecise. We found
that in the default configuration, Osiris often achieves limited code coverage. To this end,
we utilized different timeout settings for both the whole analysis and for queries to the SMT
solver [MB08] and combined the results of multiple runs to achieve better code coverage.
Furthermore, we found that—contrary to the claims in the original Osiris paper [FSS18]—not
all vulnerabilities are accurately detected by Osiris in two particular cases.

Hexagon (HXG) Token This contract is vulnerable to an integer overflow, which allows
an attacker to transfer very large amounts of ERC-20 tokens [Pecb]. Osiris reports two false
positives, which are caused by EVM code that is generated by the Solidity compiler. Even
though all types are unsigned types in the Solidity source code, the compiler generates a
signed addition. Here, Osiris reports a possible integer overflow when −2 is added to the
balanceOf mapping variable. When performing signed integer additions with negative values,
the addition naturally overflows when the result moves from the negative value range into the
positive value range and vice versa. As such, EVMPatch patches a checked addition for an
unsigned arithmetic operation which will always overflow. With our patch tester, we observe
all the failing transactions and perform manual analysis of the patched contract’s bytecode
to determine that the root cause is an issue in the Solidity compiler, i.e., the generated code
requires an additional instruction when compared to a simple unsigned subtraction.

The Hexagon Token contract is vulnerable to an integer overflow, which allows an attacker
to transfer very large amounts of ERC-20 Tokens [Pecb]. Osiris reports two false positives,
which are caused by EVM code that is generated by the Solidity compiler. Figure 7.10
shows the Solidity and corresponding EVM code. In the Solidity code in the upper listing of
Figure 7.10, we can see that the variable _value is of type unsigned (Line 6) and the variable
burnPerTransaction is also unsigned (Line 1). Even though all types are unsigned types
in the addition in Line 9, the compiler generates a signed addition. The signed addition
can be seen in lines 7 to 9 in the lower listing, where a negative signed value is pushed
onto the stack. Here, Osiris reports a possible integer overflow when −2 is added to the
balanceOf mapping variable. When performing signed integer additions with negative values,
the addition naturally overflows when the result moves from the negative value range into
the positive value range and vice versa.

When patching the ADD on line 12 in the lower listing of Figure 7.10, with a checked addition,
we introduce a false positive. Replacing a signed addition with a checked unsigned addition
will always fail if negative numbers are involved since they naturally trigger an overflow
when switching between the positive and negative ranges due to the two’s complement
representation. The patch tester in our pipeline marked almost all transactions as failing,
which is a strong indicator of a failed patch.

Social Chain (SCA) Our results also show a problem with Osiris when analyzing the SCA
token. While Osiris does detect a possible overflow during multiplication in the problematic
Solidity source code line, it does not detect the possible integer overflow for an addition in
the same source code line. However, in the actual attack transaction, the integer overflow
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1 uint8 public constant burnPerTransaction = 2;
2 mapping (address => uint256) public balanceOf;
3 // ...
4 function _transfer(address _from,
5 address _to,
6 uint _value) internal {
7 // ...
8 // Line 85 in the Hexagon contract
9 balanceOf[_from] -= _value + burnPerTransaction;

10 // ...

1 // ...
2 DUP1
3 SLOAD // load balanceOf[_from]
4 PUSH1 0x1
5 NOT // ~1 == 0xffffffff...ffffffffffe == -2
6 SWAP1 // balanceOf[_from] on top
7 DUP8 // the passed parameter `_value`
8 SWAP1 // stack = [ _balanceOf[_from], _value, -2, ... ]
9 SUB // x = _balanceOf[_from] - _value

10 DUP2 // stack = [-2, _balanceOf[_from] - _value, -2, ...]
11 ADD // -2 + (_balanceOf[_from] - _value)
12 // ...

Figure 7.10: Problematic Solidity line in the Hexagon contract (top listing). Solidity generates
the EVM code in the bottom listing. Instead of subtracting 2 from an unsigned
integer, Solidity promotes this to a signed integer and adds −2.

happens during the not-flagged addition operation. As such, this constitutes a false negative
problem of Osiris. Since the vulnerable addition is not reported by Osiris, it is also not
automatically patched by EVMPatch. In contrast, for the manually patched version we
took both arithmetic operations into account. The related attack transaction was previously
reported as an attack transaction [Pec18].

Summary of Evaluation To summarize, our evaluation on integer overflow detection shows
that EVMPatch can correctly apply patches to smart contracts preventing any integer
overflow attack. Furthermore, EVMPatch incurs only a negligible gas overhead during
deployment and runtime, especially compared to the Ether at stake. Our analysis shows that
the analyzed vulnerable smart contracts are still in active use, even after being attacked and
the vulnerabilities being publicly disclosed. This motivates the need for a timely patching
framework such as EVMPatch. Lastly, based on an extensive and detailed analysis of
26 385 532 transactions, we demonstrate that EVMPatch always preserves the contract’s
original functionality except for a few cases, where the vulnerability report (generated by
the third-party tool Osiris) was not accurate or bad coding practices were used (blackhole
address).
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7.5 Developer Study
In this Section we show the results of a developer study we conducted to gain insights
into the usability of the EVMPatch framework. Using the developer study we assess the
difficulty of manually patching and upgrading smart contracts. With our study we confirm
that existing patching and deployment processes are too error-prone. For example, none of
the developers correctly converted a contract into an upgradable contract. Furthermore, we
show that EVMPatch can be easily used by developers to semi-manually patch their smart
contracts, for example in case an access control bug is discovered.

Developer Background We conducted a study with 6 professional developers with varying
prior experience in using blockchain technologies and developing smart contracts. Our
developers consider themselves familiar with blockchain technologies but not very familiar
with developing Solidity code. None of the developers have developed an upgradable contract
before. As such, we can quantify the effort needed for a smart contract developer to learn
and apply an upgradable contract pattern.

Methodology Throughout our study, we asked the developers to perform multiple tasks
manually that are performed automatically by EVMPatch: (1) manually patch three
contracts vulnerable due to integer overflow bugs given the output of a static analyzer
(OSIRIS [FSS18]), (2) convert a contract to an upgradable contract manually and with
EVMPatch, and (3) patch an access control bug using EVMPatch by writing a custom
patch-template. The three tasks cover different scenarios, where EVMPatch can be useful
to a developer. The first two tasks cover the use of EVMPatch to patch known bug
classes with minimal human intervention. For these two tasks we assume no prior knowledge
on patching smart contracts (see Table 7.5 how developers rated their prior experience
with smart contracts). In contrast, the third task consists of extending EVMPatch. This
requires understanding a bug class and perform root cause analysis to properly patch the
vulnerability. This is surely more challenging compared to the previous two tasks. Since the
third task covers a different bug class, we believe there is no significant bias in the data due
to the developers completing the other two tasks first.

For all tasks, we measured the time required by the developer to perform the task
(excluding the time required for reading the tasks’ description). We asked the developers to

Table 7.4: Timing results for the tasks as reported by the developers given in minutes and
their reported confidence in the correctness of their results.

Task Time (Minutes) Confidence
Median Min Max Median (1-7)

Manual Integer Patches 47.50 35 78 6
Conversion 62.50 33 110 2.5
EVMPatch Conversion 1.50 1 3 -
Patch Template 4.00 2 15 7
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rate their familiarity with relevant technologies, their confidence levels in their patches, and
the difficulty of performing the tasks on a 7-point Likert scale. The full questionnaire and
the answers of the developers are shown in Table 7.5, and the recorded time measurements
are shown in Table 7.4. We provide the supporting files in a github repository.5

We then performed both a manual code review and a cross-check with EVMPatch to
analyze mistakes made by the developers. The results of our study show that significant effort
is needed to correctly patch smart contracts manually, whereas EVMPatch enables simple,
user-friendly, and efficient patching. The time measurements show that the developers, who
had no prior experience with EVMPatch, were able to perform complex tasks utilizing
EVMPatch within minutes.

Patching Integer Overflow Bugs We asked the developers to fix all integer overflow
vulnerabilities in three contracts: 1 [BEC] (CVE-2018-10299, 299 lines of code), and 2 [HXG]
(CVE-2018-11239, 102 lines of code), and 3 [SCA] (CVE-2018-10706, 404 lines of code). To
provide a representative set of contracts, we chose three ERC-20 contracts with varying
complexity (in terms of lines of code) and where the static analysis also includes missed
bugs and false alarms (see Section 7.4). We ran OSIRIS on all three contracts and provided
the developers the analysis output as well as a copy of the SafeMath Solidity library. This
accurately resembles a real-world scenario, where a blockchain developer quickly needs to
patch a smart contract based on the analysis results of recent state-of-the-art vulnerability
analysis tools and can look-up manual patching tutorials available online. All developers
manually and correctly patched the source code of all three contracts which demonstrates
their expertise in blockchain development. However, on the downside, it took the developers
on average 51.8 min (σ = 16.6 min) to create patched version for the three contracts. In
contrast, EVMPatch fully automates the patching process and is able to generate patches
for the three contracts within a maximum of 10 s.

Converting to an Upgradable Contract The developers had to convert a given smart
contract into an upgradable smart contract. We provided the developers a short description
of the delegatecall-proxy pattern and asked them to convert the given contract into two
contracts: one proxy contract and a logic contract, which is based on the original contract.
We provided no further information on how to handle the storage-layout problem, and we
explicitly allowed using code found online. The developers required an average of 66.3 min
to convert a contract into an upgradable contract, with σ = 31.3 min, the fastest taking
33 min, and the slowest developer taking 110 min. None of the developers performed a
correct conversion into an upgradable contract, which is also reflected in a median confidence
of 2.5 in the correctness reported by the developers. We observed two major mistakes:
(a) The proxy contract would only support a fixed set of functions, i.e., the proxy would
not support adding functions to the contract, and (b) more importantly, only one out of
six developers correctly handled storage collisions in the proxy and logic contract, i.e., five
of the six converted contracts were broken by design. Hence, it remains open how long it
would take developers to perform a correct conversion.

Next, we asked the developers to utilize EVMPatch to create and deploy an upgradable
contract. As EVMPatch does not require any prior knowledge about upgradable contracts,

5github.com/uni-due-syssec/evmpatch-developer-study
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the developers were able to deploy a correct upgradable contract within at most 3 min.
In addition, patching with EVMPatch inspires high confidence—a median of 7, the best
rating on our scale—in the correctness of the patch. This gives a strong confirmation
that deployment of a proxy with EVMPatch is indeed superior to manual patching and
upgrading.

Extending EVMPatch The developers had to write a custom patch template for EVM-
Patch. We instructed the developers on how to use EVMPatch and how patch templates
are written with EVMPatch’s patch template language (see Figure 7.7 for an example).
Furthermore, we presented the developers an extended bug report that shows how an access
control bug can be exploited. The developers leveraged the full EVMPatch system, i.e.,
EVMPatch applies the patch and validates the patch using the patch tester component
which replays past transactions from the blockchain and notifies the developer whether:
(a) the patch prevents a known attack, and (b) whether the patch broke functionality in
other prior legitimate transactions. As such, EVMPatch allowed the developers to create
a fully functional and securely patched upgradable contract within a few minutes. On
average, the developers only needed 5.5 min, and a maximum of 15 min, to create a custom
patch template. As expected, all developers correctly patched the given contract using
EVMPatch, because a faulty patch would have been reported by EVMPatch’s patch
tester to the developer. EVMPatch’s integrated patch tester gives the developers a high
confidence into their patch. On average, the developers reported a confidence level of 6.6
(σ = 0.4), where 7 is the most confident. Furthermore, none of the developers considered
writing such a custom patch template as particularly difficult.

Summary Our study provides confirmation that EVMPatch offers a high degree of
automation, efficiency, and usability thereby freeing developers from manual and error-prone
tasks. In particular, none of the six developers were able to produce a correct upgradable
contract mainly due to the difficulty of preserving the storage-layout. Our study also
confirms that extending EVMPatch with custom patch templates is a feasible task, even
for developers that are unaware of the inner workings of EVMPatch.
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Table 7.5: Developer study questionnaire and answers by six developers (A-F).

Question Answers Scale

A B C D E F Median

Q1 Did you write Solidity code in the last two
weeks?

no no no no yes no (yes/no)

Q2 Have you previously worked on a
production-grade Solidity-based Ethereum
contract?

yes no no no no no (yes/no)

Q3 Have you previously worked on a
production-grade smart contract on another
Blockchain Platform?

no no yes no yes yes (yes/no)

Q4 How familiar are you with Blockchain
technologies in general?

6 5 7 6 6 6 6 (1 not familiar, 7
very familiar)

Q5 How familiar are you with the Ethereum
Blockchain in particular?

6 5 4 2 6 2 4.5 (1 not familiar, 7
very familiar)

Q6 How familiar are you with the Solidity
programming language?

6 3 2 1 5 1 2.5 (1 not familiar, 7
very familiar)

Q7 How familiar are you with upgradable contracts
in Solidity?

5 3 1 1 4 1 2 (1 not familiar, 7
very familiar)

Task 1

T1Q1 How confident are you in the correctness of
your patch to contract 1?

5 7 7 6 7 6 6.5 (1 least confident,
7 most confident)

T1Q2 How confident are you in the correctness of
your patch to contract 2?

6 7 7 4 7 6 6.5 (1 least confident,
7 most confident)

T1Q3 How confident are you in the correctness of
your patch to contract 3?

3 5 6 5 2 4 4.5 (1 least confident,
7 most confident)

T1Q4 How much time did you need to patch all three
contracts?

78 35 40 40 55 63 47.5 (Time in
Minutes)

Task 2

T2Q1 Have you previously used the delegatecall-proxy
pattern in a Solidity contract?

no no no no no no (yes/no)

T2Q2 Have you previously used a different pattern to
make a Solidity contract upgradable?

no no no no no no (yes/no)

T2Q3 Have you previously used a different
upgradable smart contract?

no no no no no no (yes/no)

T2Q4 How confident are you in the correctness of
your conversion?

5 3 1 1 5 2 2.5 (1 least confident,
7 most confident)

T2Q5 How difficult was the manual conversion? 4 5 5 6 4 6 5 (1 easy, 7 most
difficult)

T2Q6 How difficult was the conversion using the
evmpatch tool?

1 1 1 1 1 1 1 (1 easy, 7 most
difficult)

T2Q8 How much time did you need to convert the
contract to an upgradable contract (Step 1)?

110 80 45 90 40 33 62.5 (Time in
Minutes)

T2Q8 How much time did you need to convert the
contract using EVMPatch (Step 2)?

3 1 1 2 3 1 1.5 (Time in
Minutes)

Task 3

T3Q1 How confident are you in the correctness of
your patch?

6 7 7 7 7 6 7 (1 least confident,
7 most confident)

T3Q2 How difficult was the conversion using the
EVMPatch tool?

2 1 1 1 1 1 1 (1 easy, 7 most
difficult)

T3Q3 How much time did you need to create and
deploy the patch using EVMPatch?

15 2 5 2 6 3 4 (Time in
Minutes)
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7.6 Related Work
Bytecode rewriting for patching smart contracts has also been explored by Zhang et
al. [Zha+20]. SMARTSHIELD requires a complete CFG to update jump targets and
data references. As discussed in Section 7.1.2, generating a highly accurate CFG is highly
challenging due to the EVM’s bytecode format. We believe that such a bytecode rewriting
strategy does not scale to larger and more complicated contracts. In contrast, EVMPatch’s
trampoline-based rewriting strategy does not require an accurate CFG and is much more
resilient when rewriting complex contracts. Furthermore, SMARTSHIELD implements
custom bytecode analysis to detect vulnerabilities, which may not be as accurate as spe-
cialized analyses. For example, SMARTSHIELD’s analysis does not infer whether an
integer type is signed, which is important for accurate integer overflow detection [FSS18].
In contrast, EVMPatch is a flexible framework that can integrate many static analysis
tools for detecting vulnerabilities and can leverage analysis tool improvements with minimal
effort. Last and most importantly, EVMPatch automates the whole lifecycle of deploying
and managing an upgradable contract, while SMARTSHIELD is designed to harden a
contract pre-deployment. With EVMPatch, a smart contract developer can also patch
vulnerabilities that are discovered after deployment of the contract.

Torres et al. [TJS22] introduces Elysium, a context-aware patch generation framework
for smart contracts that also utilizes bytecode rewriting. Similar to SMARTSHIELD,
Elysium requires a complete CFG to introduce patches, and as such, is less resilient than
EVMPatch’s trampoline-based approach. However, in contrast to EVMPatch, Elysium
features several static analysis passes to gather semantic context. For example, Elysium
recovers integer signedness before patching integer-related bugs. In contrast, EVMPatch
gathers this context from the underlying analysis tool Osiris [FSS18]. Furthermore, Elysium
recovers the last used storage slot for smart contract global variables to store reentrancy
lock variables. Similar to the source-level ReentrancyGuard patch, Elysium applies a single
global reentrancy lock. EVMPatch is capable of creating the same type of patch but does
not require contextual analysis. Instead, EVMPatch’s patch template simply utilizes a
randomly selected arbitrary address for lock variables. Essentially this ensures storage-layout
compatibility in a probabilistic manner, relying on the vast number of storage slots. More
specifically, the EVM storage area features 2256 different slots, and as such, it is highly unlikely
to have colliding storage addresses when choosing them at random. Similarly, the Solidity
compiler relies on the size of the storage address space to avoid collisions when implementing
hash maps (i.e., the mapping type in Solidity). Finally, Elysium automatically inserts access
control checks by introducing a special owner slot during contract construction and then
augments functions with access control checks. However, it is not clear whether this approach
to patching access control issues is always applicable. Elysium does not infer any semantic
knowledge about existing access control mechanisms. As such, existing ownership transferral
mechanisms would break due to the newly introduced access control checks. Furthermore,
there are also more complex ownership mechanisms, such as so-called multi-owned contracts,
which are owned by more than one owner and often require majority votes from owners before
performing an action such as Ether transfer. Automatically introducing access control checks
for a single owner would break the semantics of the contract and potentially even introduce a
vulnerability. To summarize, we conclude that Elysium does not properly utilize contextual
information for patching. Especially for access control bugs, Elysium does not infer anything
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about existing access control mechanisms, potentially breaking smart contracts. In contrast,
EVMPatch uses fully automatic patching for vulnerabilities like integer overflows and
exposes an interface to allow manual specification of access control patches.

The Ethereum community explored several design patterns to allow upgradable smart
contracts [Cona; Nad; Tra18; ZepOS] with manual migration to a new contract and the proxy
pattern being the most popular (see Section 7.1.1). The ZeppelinOS [ZepOS] framework
supports upgradable contracts by implementing the delegatecall-proxy pattern. However,
developers have to manually ensure compatibility of the legacy and patched contract on the
Solidity level. This can be achieved using static analysis tools that perform “upgradeability”
checks (e.g., Slither [SliU] checks for a compatible storage layout), which relies on accurate
knowledge of compiler behavior with respect to storage allocations. On the other hand,
EVMPatch combines existing analysis tools and provides an automatic method to patch
detected vulnerabilities while keeping the storage layout consistent by design. Moreover,
using bytecode rewriting prevents potential problems caused by unexpected behaviors from
compilers.

7.7 Discussion and Conclusion
Updating erroneous smart contracts constitutes one of the major challenges in the field of
blockchain technologies. The recent past has shown that attackers are fast in successfully
abusing smart contract errors due to the natural design of the underlying technology: always
online and available, one common and simple computing engine without any subtle software
and configuration dependencies, and often a high amount of cryptocurrency at risk. While
many proposals have introduced frameworks to aid developers in finding bugs [FSS18; KR18a;
Luu+16; Sch+20b; Tsa+18], it remains open how developers and the community can quickly
and automatically react to vulnerabilities on already deployed contracts. In this chapter, we
describe the design and implementation of a framework that supports automated and nearly
instant patching of smart contract errors based on bytecode rewriting. We implement a fully
automated pipeline to identify and patch integer overflow bugs in smart contracts using our
EVMPatch framework and the Osiris analysis tool. Our evaluation shows that EVMPatch
is highly effective in patching bugs and also verifying patches. Beyond integer overflows,
discuss potential patching mechanisms for reentrancy bugs and mishandled exceptions. We
also show how to utilize EVMPatch for semi-manual patching of smart contracts for access
control bugs(Section 7.3.4). We believe that already such a semi-manual approach is useful to
developers, as they can quickly write new patch specifications and benefit from EVMPatch’s
patch testing infrastructure. With our developer study, we show that developers are able to
write new patch specifications in mere minutes.

However, when dealing with access control bugs, EVMPatch’s limitation becomes appar-
ent: it relies on existing analysis tools to provide enough information to synthesize a patch.
Several bug classes, such as integer bugs or unhandled exceptions, are easy to patch as the
patches require little semantic information about the contract. However, when it comes
to synthesizing patches for access control, the patch template requires semantic knowledge
about the contract, more specifically, how it implements access control. Unfortunately, there
is no standard implementation of access control for Ethereum smart contracts and various
different access control models are available. Furthermore, no current analysis tool is capable
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of providing semantic knowledge about the access control checks of smart contracts. As
future work, existing analysis tools must be expanded to acquire semantic knowledge, which
in turn can feed into EVMPatch to create patches for a more diverse set of smart contracts.

We were able to demonstrate that real-world integer overflow vulnerabilities can be
successfully patched without violating the functional correctness of the smart contract.
Our developer study shows that an automated patching approach greatly reduces the time
required for patching smart contracts and that our implementation, EVMPatch, can be
practically integrated into a smart contract developer’s workflow. We believe that automated
patching will increase the trustworthiness and acceptance of smart contracts as it allows
developers to react quickly to reported vulnerabilities.
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CHAPTER 8
CONCLUSION

This dissertation advances the state-of-the-art in the field of software security of two new
secure execution environments: trusted enclaves and smart contracts. This dissertation shows
how to adapt well-known techniques, such as symbolic execution, fuzzing, taint tracking,
and binary rewriting, to new execution environments. The methods and tools presented
in this dissertation allow software system vendors to significantly improve their products’
software security by (1) identifying security vulnerabilities early in the development process
and (2) hardening existing deployments.

Securely developing software for trusted execution environments, such as SGX enclaves, is
highly challenging due to the new and complex threat model that such software faces. Current
software analysis tools cannot identify security vulnerabilities that arise on the boundary of
the enclave code and the untrusted part of the software system, as they only identify generic
software security issues. They are unaware of the enclave-specific threat model and therefore
miss crucial security vulnerabilities. To tackle this lack of analysis methods, Chapter 4
presents TeeRex, a methodology for automated vulnerability detection based on symbolic
execution tailored specifically to trusted execution environments, such as SGX enclaves. We
show how to adapt a general symbolic execution framework to the particularities of SGX,
making TeeRex the first practical analysis tool that captures enclave-specific vulnerabilities.
This chapter shows how to overcome challenges in implementing efficient and practical
symbolic execution of SGX enclaves. Furthermore, we show how to exploit the particularities
of the SGX technology to speed up symbolic execution with multiple CPU cores. Using
this methodology, enclave developers can now automatically scan their SGX enclave for
vulnerabilities before deploying them.

To evaluate our symbolic execution tool TeeRex, we perform an analysis of several
publicly available enclaves. Out of 6 enclaves, we identify critical vulnerabilities in a set of
5 enclaves. This includes widely deployed enclaves such as fingerprint reader drivers used
on Lenovo and Dell laptops. This demonstrates the practical usefulness of TeeRex as an
analysis tool. Furthermore, it shows that current enclaves often disregard the complex threat
model of the SGX technology, leading to vulnerabilities.

Based on the findings in these enclaves, we perform root-cause analysis of the bugs that
TeeRex identified. We systematize these root causes and develop a set of vulnerability
patterns. For the first time, offering enclave developers a systematic analysis of root causes
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and guidelines to avoid code anti-patterns in the first place. To validate the security of
existing enclaves, developers can utilize the analysis techniques pioneered in the TeeRex
tool.

With TeeRex, developers for enclaves already have a tool at hand to improve the security
of SGX enclaves by systematically vetting the interface of the enclave for SGX specific
security vulnerabilities. However, TeeRex is based on symbolic execution and often fails
to uncover vulnerabilities deep inside large code bases due to the state explosion problem.
As such, other analysis directions need to be explored in the future. For example, coverage-
guided fuzzing or hybrids of fuzzing and concolic execution are prime candidates to adapt
for analyzing trusted enclave code.

On the other hand, SGX is only one of many popular TEE technologies. In fact, SGX is
being deprecated in favor of other technologies, such as Intel’s Trusted Domain Extensions
(TDX), AMD’s Secure Encrypted Virtual machines (SEV), or ARM’s Realm Management
Extensions (RME). These extensions all provide the possibility of launching full virtual
machines inside enclaves. While this increases the familiarity of developers with the TEE, it
increases the size of the TCB to a full operating system. It remains an interesting future
research direction to assess whether these new TEEs are easier to secure than SGX enclave
code.

Continuing the line of work on vulnerability detection, Chapter 5 shows how to improve
the state-of-the-art in smart contract fuzzing. Chapter 5 presents an assessment of the
capabilities of existing analysis tools. Here a special focus is placed on the capability to scale
to long transaction sequences: an essential prerequisite to identify bugs in complex smart
contracts. Based on our experiments, we conclude that existing smart contract analysis tools
are not well equipped to handle the ever-increasing complexity of smart contract code.

To counteract this tendency and provide smart contract developers with a practical analysis
tool, Chapter 5 presents EF�CF, a high-performance smart contract fuzzer. With EF�CF, we
show how to apply state-of-the-art fuzzing techniques to the area of smart contract fuzzing.
Using high-performance fuzzing techniques, EF�CF is able to outperform existing fuzzers
and, in practice, even the capabilities of symbolic analysis tools.

Based on the high-performance fuzzing framework, we show how to adapt a fuzzer to
rigorously test Ethereum smart contracts in the face of the many-faceted and complex
interactions that are possible in Ethereum. More specifically, we show how to accurately
simulate malicious attacker-controlled smart contracts in a fuzzer. This allows EF�CF to
accurately detect reentrancy and compositional vulnerabilities in smart contracts. In contrast
to all prior analysis tools, EF�CF does not perform any heuristic detection of reentrancy
vulnerabilities. Instead, EF�CF utilizes a novel probabilistic method to simulate arbitrary
attacker-controlled smart contracts that are part of a reentrancy attack against the target
smart contract. This means that EF�CF eradicates any false alarms caused by heuristic
reentrancy detection and generates inspectable and replayable transaction sequences that
exploit a reentrancy vulnerability. As such, EF�CF is the first purely fuzzing-based exploit
generator for smart contracts, facilitated by the groundwork on high-performance fuzzing of
smart contracts presented at the beginning of Chapter 5.

The EF�CF prototype is designed as a high-performance fuzzer for EVM smart contracts.
However, the general concepts and the architecture of EF�CF is independent of the targeted
blockchain system. For example, EF�CF’s design could be leveraged in an implementation
of a high throughput fuzzer for other popular smart contract execution environments, such
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as the rBPF in the Solana blockchain or WebAssembly employed by Web Browsers and
other Blockchain systems. EF�CF demonstrates that analysis tools must put significant
effort into efficient input generation strategies. EF�CF outperforms even symbolic execution
and hybrid concolic fuzzing tools. However, EF�CF essentially performs random search
on the set of possible transaction sequences, guided only by code coverage feedback. As
our experiments show, this still achieves very good results in practice because of EF�CF’s
optimized throughput. However, there are many techniques that attempt to prune the
search space or perform more directed mutations, allowing a fuzzer to analyze targets even
with slow throughput. It remains to be seen whether such techniques can be implemented
efficiently, such that high throughput fuzzers such EF�CF can also utilize those techniques,
and whether this actually improves the time-to-bug metric in practice.

However, all practical vulnerability detection approaches are prone to missing bugs. As
such, the security of software cannot rely solely on fuzzing and symbolic execution to fix
vulnerabilities before deployment. Developers require ways to deal with security issues
after deployment. This is especially true for smart contracts, which are immutable by
design, i.e., they are identified using a cryptographic hash of their code and initial state.
Chapter 6 presents Sereum, a runtime attack detection approach tailored to reentrancy
attacks on smart contracts. We show that Sereum is capable of accurately identifying
reentrancy attacks at runtime. By replaying large parts of the transactions recorded on the
Ethereum blockchain, we are able to show that Sereum correctly identifies several real-world
reentrancy attacks. Furthermore, we uncovered new attacks that were not widely known in
the community before our evaluation.

While Sereum is an effective tool to mitigate attacks across a blockchain system, it is
highly challenging to integrate such a mitigation into an already deployed blockchain system,
as it would change the execution semantics of the execution environment. As such, a more
practical approach is required to react to newly discovered smart contract vulnerabilities
or attacks. In Chapter 7, we present EVMPatch, a streamlined and automated approach
to patching smart contracts using bytecode rewriting and the so-called proxy pattern to
work around the immutability of smart contracts and facilitate upgrades. We show that
EVMPatch can easily be used by developers to set up upgradable contracts and patch
a diverse set of vulnerabilities, both based on manual patch specification and also using
automated analysis tools. Both the vulnerability identification with EF�CF in Chapter 5
and the attack detection of Sereum in Chapter 6 can be utilized as input to EVMPatch’s
automated patching process. Thus, EVMPatch allows smart contract developers to bring
the power of existing analysis tools to already deployed contracts.

Overall, we conclude that secure execution environments give certain security guarantees
to developers. However, these execution environments also pose new and unfamiliar threat
models, making them more likely to introduce security vulnerabilities. Given the abundance
of vulnerabilities, which we and the community at large discovered, it is clear that there is a
lack of awareness of these security issues and, arguably even worse, existing tooling is not
adequate to assist developers in their efforts to secure critical code in enclaves and smart
contracts. With TeeRex and EF�CF, we show how to adapt vulnerability identification
techniques to identify security vulnerabilities specific to secure execution environments before
deployment. With Sereum and EVMPatch, we provide methods to securely operate
software in these new secure execution environments, overcoming the limitations of the
execution environments to facilitate mitigation of vulnerabilities.
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